University of Oslo
Department of Informatics

Open Source Software
Development in
Developing Countries

The HISP Case in
Ethiopia

Nils Fredrik Gjerull
nilsfr@fi.ulo.no

Master thesis

September 15, 2006

Abstract

This thesis investigates free and open source software (FLOSS), and FLOSS
in the context of developing countries. The research is based on two ac-
tion research case studies. Both case studies are done within the Health
Information Systems Programme (HISP) network. HISP is a research and
development network focusing on promoting effective use of information
in the health systems of developing countries.

The first case study was conducted in the Tigray region of Ethiopia. In
this case study a team of researchers used action research to configure and
adapt District Health Information Software (DHIS) to the local context of
the Tigray health system. DHIS is a flexible health information system used
to collect routine data from health systems. DHIS is distributed under a
FLOSS license. I participated in this team as a software developer.

In the second case study I participated in the development of DHIS 2 which
is a total reimplementation of DHIS based on a platform of FLOSS tech-
nologies. DHIS 2 is developed using distributed voluntary development
and licensed under a FLOSS license. In other words DHIS 2 is developed
using a community model commonly used by large scale FLOSS projects. 1
participated in this project as a FLOSS developer, and I focused on the ex-
tensibility of DHIS 2. I created a throwaway prototype of a plug-in frame-
work.

Through this two case studies I investigate FLOSS and how FLOSS can ben-
efit and are benefiting both Ethiopia and the HISP network. I argue that the
access to source code facilitates technology transfer/translation of informa-
tion and communication technologies (ICT). Context dependent software
like health information systems need to be adapted to each local context in
order to be useful and effective, having access to source code is a life saver
in this process.

Acknowledgements

I give my warmest thanks to my family for their love and support. I thank
my brother Ole Andreas Gjerull for encouragements, and for all the cups
of coffee we have shared. I thank my parents Petter and Berit Gjerull for
having faith in me and for economical support.

I thank Bjarne Holen and Henrik Aarseth, the two guys I share an apart-
ment with. Thanks for all our conversations, and for frequently being the
only social contact I had, after a long day of writing on my thesis. Thanks
for all the hours we have shared in front of the television.

I thank Mina Lam and Thanh Phan for sharing dinners with me in the Uni-
versity canteen. Thanks for a lot of fun and interesting conversations, you
have given light to my days. My master studies would not be the same
without you.

I thank my research counselor Jorn Braa for constructive feedback and
guidance. May HISP be successful in promoting the effective use of in-
formation in developing countries.

Warm thanks goes to all my colleagues in the Ethiopian HISP team. You
have given a warm face to Ethiopia. I give special thanks to the other mem-
bers of the Tigray team; Solomon Birhanu, Hirut Gebrekidan Damitew,
Netsanet Haile Gebreyesus and Kalkidan Gezahegn. I thank all at the
Tigray health bureau for making the Tigray project possible. I thank pro-
fessor Sundeep Sahay for his assistance to us in Tigray.

I thank Knut Staring, Ola Hodne Titlestad and all the DHIS 2 developers
for all their excellent effort in creating the next major version of DHIS. May
simplicity and flexibility be your guides.

ii

Table of Contents

I1

1 Introduction 1
1.1 Two action research case studies 2
1.2 Motivation o 3
1.3 Research domains and objectives 3
1.4 Chapter presentation 5
Theory 8
Information Systems Theory 9
2.1 Perspectives 9

2.1.1 Information systems as social systems 12
2.1.2 Structuration theory in the field of IS. 14
2.1.3 Community- and Organisational Informatics 19
2.2 Participatorydesign o L 23
221 Prototyping 26

2.2.2 Limitations and challenges with participatory approaches 28
2.3 Information Systems and developing countries 29
23.1 Thedigitaldivide 31
2.3.2 Technology transfer/translation 34
Method 39
Methods 40
3.1 Researchmethodology 40
3.1.1 Actionresearch 41
312 CaseStudy. 49
3.2 Myresearchapproach 49
3.21 Working in the Tigray HISP team 50
3.2.2 Participating in the development of DHIS2 51
3.2.3 Methods for data collection 52
324 HowlwilluseST 55

3.25 Limitations in my research approach 56

iii

III Background

4 Short History of Open Source

The early start of programming
The three strains of hackerdom
Multics, Unix and AT&T
The rise of the Internet
Free Software Foundation
Minix, Linuxand Hurd
The rise of Open Source into the main stream

4.1
4.2
43
44
4.5
4.6
4.7

5 FLOSS - How does it work?

51 Philosophyandvalues
5.1.1 Hackerethic.
51.2 Pragmatism
513 Moralism,
Development practices

52
53
54
55
5.6
5.7

Motivation . .
Governance .

Property, Copyrightand Licenses
Challenges and constrains of FLOSS
FLOSS in developing countries
571 Advantages FLOSSoffer
572 Participationin FLOSS
5.7.3 Projects for the developingworld
5.7.4 FLOSS participation and use challenges

6 Health Information Systems Programme (HISP)

6.1

HISP history .

6.2 HISP philosophy, methods and processes
Inscription of the HISP approachinto DHIS

6.3

IV Empirical Study

7 The Ethiopian Context

7.1
7.2
7.3
7.4

Demographics

Ethiopia, a Land of History

Politics
ICT in Ethiopia

58

59
60
61
64
67
68
72
76

82
82
83
85
86
87
89
92
96
98
100
100
102
103
107

109
110
111
113

116

iv

8

10

11

The HISP project in Ethiopia

8.1 Tigray Demographics
82 TheTigrayteam
83 EPlHinfo.
8.4 Adapting DHIS for Tigray
8.5 Problems with the DHIS software
8.6 Getting support from the HISP community
8.7 Being the farench/faranji

FLOSS in Ethiopia

9.1 Economic argument for FLOSS
92 TheTRIPSagreement.
9.3 Political support for FLOSS
94 FLOSSusage
9.5 Ethiopian FLOSS organisations
9.6 Participation of Ethiopiain FLOSS
9.7 Analysis of the network in Ethiopia

Development of a Plug-in Framework for DHIS 2

10.1 Why the need for a reimplementation?
10.2 The community modelin DHIS2
10.3 My roleintheproject
10.4 What motivated me to participate.
10.5 Making the application extensible
10.6 Interaction with other DHIS 2 developers
10.7 Interaction with projects we dependedon

Discussion and Conclusion

Discussion

11.1 FLOSS and Ethiopia.
11.1.1 Effective use of theInternet
11.1.2 Effectiveuseof FLOSS
11.1.3 HISP, Tigray and Ethiopia

11.2 FLOSSand HISP
11.2.1 HISP and the conventional FLOSS community
11.2.2 Comparing DHIS 1.x and DHIS 2 development
11.2.3 Comparing the Tigray and DHIS2 cases

11.3 Theoretical considerations
11.3.1 Structuration of FLOSS.
11.3.2 Participatory development
11.3.3 Free to translate technology

129
130
130
138
140
142
143
144

147
147
148
149
150
151
153
153

157
158
160
162
163
164
168
168

171

12 Conclusion 197
12.1 Validity of theresearch 197
12.1.1 Processvalidity 197

12.1.2 Dialogic validity 198

12.1.3 Outcomevalidity 198

12.1.4 Catalyticvalidity 199

12.1.5 Democratic validity 199

12.2 Concluding remarks 200
12.3 Possible futureresearch 201
VI Appendixes 208
A Lists 209
Al Listof Acronyms 209
A2 ListofFigures 212

A3 ListofTables 212

Chapter 1

Introduction

Developing countries are historically disadvantaged, and the unprecedented
rapid phase of technological development we see in our times, are leaving
the disadvantaged in developing countries further and further behind. In
the developed world the use of Information and Communication Technology
(ICT) has skyrocketed in the last two decades. Most people in the devel-
oping world are left out of this development. The gab between those who
can and those who cannot effectively use ICT are frequently labeled as the
digital divide. This divide is not only a divide between those who have
access and those who do not have access to technical gadgets. This divide
is a knowledge divide which is not limited to the effective use of ICT, but
also the production and development of ICT.

An important part of most ICTs is the software. Software are needed to
make computers and mobile phones useful. The software in ICTs are fre-
quently held secret by the producers of the software, and sold as prod-
ucts to customers. The customer is allowed to use the software, but not to
change and distribute copies of it. The treatment of software as products is
the most well known paradigm within the ICT industry. Another way to
treat software has been visible from the early start of the computer indus-
try. Here software is treated like literature open to peer review and edit-
ing. The literature I am talking about here is the source code. The source
code explains in a human readable way what the software should do. The
source code contains knowledge for those able and willing to read it. Ac-
cess to the source code allows a user to change the software, and the user
are also allowed to distribute copies of it. The software produced in this
way is called free software or open source software, to incorporate both of
this terms I will use the term Free/Libre/Open Source Software (FLOSS) in this
thesis.

1.1 Two action research case studies 2

In this thesis I am going to explore FLOSS and how FLOSS can benefit the
developing country Ethiopia. This I am going to do through two case stud-
ies conducted as part of the Health Information Systems Programme (HISP)
network. I will base my research on a social informatics perspective on In-
formation Systems (IS). And I will use action research as my research method-
ology. In the following sections I am going to give an introduction to this
case studies, my motivations for doing this research, and the research do-
main and the objectives I had for the research. Last I am going to present
the chapters in this thesis.

1.1 Two action research case studies

I have been actively involved in two projects. The first was an action re-
search project conducted in the region of Tigray in Ethiopia. In the second
project I participated as a developer in a FLOSS project. Both of this cases
was conducted within the HISP network.

HISP is an international research and development network centered around
health information. HISP have a vision to promote the effective use of in-
formation in the health systems of developing countries. Most of the people
in this network are academics, health workers, and some ICT professionals.
HISP are active in a number of counties in Africa and Asia, and in Norway
where [am from.

In Ethiopia several regions had expressed interest in testing the health statis-
tics software offered by HISP. The software, District Health Information Soft-
ware (DHIS), is created to gather routine data from health systems. DHIS
is designed to make it possible to customise it to the local context of var-
ious health systems, and it is licensed with a FLOSS license. Tigray was
one of the regions to express interest in testing DHIS. In Tigray I was part
of a team using action research to configure DHIS into the local context of
Tigray. This was done within a social informatics perspective which con-
sider both the social and the technical aspects of an IS.

After I had finished the Tigray case, I started on the second case study.
A project had recently been initiated, with the mandate to develop a new
version of the DHIS software called DHIS 2. DHIS 2 is a total reimplemen-
tation of the DHIS software. The development of DHIS 2 is done using
distributed voluntary development, which is common for many large scale
FLOSS projects. In this case I participated as a FLOSS developer, and I was
working on a plug-in framework for DHIS 2.

1.2 Motivation 3

1.2 Motivation

Through my studies in computer science I have been made aware of FLOSS.
For years I have been interested in computers and in how computers works
“under the hood”. FLOSS has given me access to a lot of useful software
which would otherwise be out of my reach. Having access to FLOSS has
given me a great opportunity to learn about computers and programming.
At the same time my Christian faith and my travels to counties poorer than
mine, have given me an interest in developing countries. From this two
interests it was not far for me to ask about FLOSS, and how FLOSS can
benefit developing countries. By conducting my research as part of the
HISP network I got an opportunity to conduct my research into FLOSS and
developing countries, and at the same time I could actively contribute and
become a better programmer.

Research into FLOSS and how FLOSS can benefit developing countries
have caught relatively widespread interest in the last few years. I am not
the first to ask this question. By basing my research on two concrete case
studies I believe this research will create knowledge about FLOSS in the
context of Ethiopia and in the context of HISP.

1.3 Research domains and objectives

The research domains in which I am going to conduct my research is best
explained by Figure 1.1. A full line signifies that the relationship between
the two domains is subject to my research. The dashed lines signifies rel-
evant relationships which is not explicitly subject to my research, but they
are relevant for my research. My problem domains are FLOSS, HISP, Ethiopia
and the Tigray health bureau. I am going to concentrate on the relationship
between FLOSS and Ethiopia, FLOSS and HISP, and between HISP and the
Tigray health bureau. My research will be conducted using the framework
of structuration theory and a social informatics perspective on technology.
This will all be explained in chapter 2.

I have three primary objectives for my research into the previously men-
tioned research domains. This objectives will be presented in the following
paragraphs.

Research objective 1 - Explore the structuration of FLOSS.
Through this research I want to learn about the structuration of FLOSS and

1.3 Research domains and objectives 4

Structuration Theory

Social Informatics

. Ethiopia

| . ! ‘
i Free/Libre/Open | |
! S RSS— . . ‘
| Source Software | | (Developing countries) !
! I
B e SRR ~_ P AEEEEEEEE [RRREREEE ’

~ N P e 7 :

N ‘

s ~ ~ |

7z - N ~ !

BN Y

:' Tigray Health 1
= Bureau !
| (Health care) |

Health Information i
Systems Programme |

Figure 1.1: Visualising my research domains

common social practices of the FLOSS community. I will give special em-
phasis to the practices of source code sharing and distributed voluntary
development. My exploration of the structuration of FLOSS will serve as
an introduction to FLOSS for those who are not familiar with the FLOSS
community, and will serve as background information for my case studies.

Research objective 2 — Explore how Ethiopia can benefit and are benefiting
from FLOSS.

I want to explore the current use of FLOSS in Ethiopia, and equally impor-
tant I want to explore the participation of Ethiopia in the global FLOSS com-
munity and the institutional support for FLOSS in Ethiopia. Since Ethiopia
is a developing country I will also do research into how FLOSS can benefit
and are benefiting developing countries in general. This research will be
based on the concept of knowledge translation and how FLOSS facilitates
knowledge translation. The transfer or translation of knowledge and tech-
nology, is important for bridging the digital divide. Based on the findings
from this research objective and from research objective 11 will discuss how
Ethiopia better can benefit from FLOSS.

1.4 Chapter presentation 5

Research objective 3 — Explore how HISP can benefit and are benefiting from
FLOSS.

HISP develops, support and distribute/translate the FLOSS licensed DHIS
software. Through my research I want to find out why the DHIS soft-
ware was licensed in this way and how this benefits the translation pro-
cess, which DHIS undergoes in each local context where DHIS is used. My
work in Tigray was primarily to translate DHIS into the local context of the
Tigray health system. I also want to explore the development of DHIS and
the differences between the development of DHIS 1 and DHIS 2. I want
to compare the social practices in the current DHIS 2 development with
social practices common in the FLOSS community. Based on the findings
from this research objective and from research objective 11 will discuss how
HISP better can benefit from FLOSS.

1.4 Chapter presentation

PartI - Theory

Chapter 2 — Information System Theory: This chapter is a general in-
troduction to information systems theories relevant to my research. This
introduction is based on reviewing literature from the field of IS research.
I start out by discussing different perspectives on IS and explain my cho-
sen perspective. I explain the Scandinavian approach to systems design
called participatory design, which is important to the design of DHIS. Last
I review literature about IS development in developing countries.

Part II - Method

Chapter 3 -Methods: This chapter explains the methodologies and meth-
ods I have used in my research. I give a quite thorough explanation of
action research. Action research is my overarching research methodology.
The role I played in the two case studies are explained, and the time span
and general context of the case studies are explained. I explain the concrete
methods I use for my research. Last I make an assessment of the limitations
of my research approach.

1.4 Chapter presentation 6

Part III - Background

Chapter 4 — Short History of Open Source: To explore the structuration
of FLOSS I will give an overview of important movements, organisations
and events in the history off FLOSS. I will start from the early history of
computers and explain how the practice of sharing source code have repli-
cated through time and space into our resent times. This is important for
the understanding of the FLOSS community.

Chapter 5 — FLOSS - How does it work?: In this chapter I will explore
the current social system of FLOSS. I will explain philosophies and values
common in the FLOSS community. I will explain important development
practices used by FLOSS developers and FLOSS projects. I will look into
the question of motivation. What motivates people do use their time, en-
ergy and skill on contributing to FLOSS software, when they are not com-
pensated for their time? I will look into governance structures within the
FLOSS community, and I will look into how FLOSS projects are managed.
Both proprietary software and FLOSS software come under the copyright
regime, the difference is in the license under which the software is dis-
tributed. I will present the various types of FLOSS licenses. Then I will
make an assessment of the challenges I see in the FLOSS approach to the
development and distribution of software. Last I will explore FLOSS in the
context of developing countries.

Chapter 6 — Health Information Systems Programme: This chapter in-
troduces the HISP research and development network. The historical back-
ground to HISP is given and the basic philosophies of HISP are explained.
I explains the most important methods and processes promoted by HISP,
and how this methods and processes are inscribed into the DHIS software.

Part IV - Empirical Study

Chapter 7 - The Ethiopian Context: This chapter introduces the Ethiopian
context. I give some basic demographics about the country, and I make a
brief outline of the Ethiopian history and the current political system. Last I
will explore ICT in Ethiopia. I will look into the current Internet infrastruc-
ture and the political plans to improve this infrastructure. The Ethiopian
government has grand plans for the use of ICT in Ethiopia, this plans will
be explained in this chapter. This chapter is meant to give an overview of
the current state of affairs in Ethiopia.

1.4 Chapter presentation 7

Chapter 8 — The HISP project in Ethiopia: This chapter is based on my
case study in Tigray. I introducing the Tigray context by giving some basic
demographics about Tigray. I move on by introducing the team I worked
with in Tigray, and our dealings with the Tigray health bureau. The Tigray
health bureau already used a health statistical system so I will explain this
system. Then I will describe our efforts to configure DHIS for the local
context in Tigray, and the challenges we met in doing this. I will explain
our relations with the rest of the HISP network. Last I will describe the
cultural challenges I met while working in Ethiopia.

Chapter 9 — FLOSS in Ethiopia: I start this chapter by making an eco-
nomic argument for Ethiopia to use FLOSS software. This is related to the
TRIPS agreement which requires the signers to ratify laws protecting intel-
lectual property rights. Then I look into the political support of FLOSS in
Ethiopia, and move on to the institutional support given by FLOSS organ-
isations. Then I look into the participation of Ethiopia in the global FLOSS
community. Last I make an assessment of the use of FLOSS by analysing
the software used on web servers in Ethiopia.

Chapter 10 — Development of a Plug-in Framework for DHIS 2: This
chapter is based on the DHIS 2 case study. First I explain the reasons why
a reimplementation of DHIS was necessary. Then I explain how the DHIS
2 development is organised according to a community model. After that
I move on to explain my role in the DHIS 2 project, my motivations to
participate and my approach for making a plug-in framework for DHIS 2.
Last I explain my communication with the other DHIS 2 developers, and
my communication with other FLOSS project I depended on for creating a
throwaway prototype of a plug-in framework.

Part V - Discussion and Conclusion

Chapter 11 — Discussion: In this chapter I discuss the findings from my
research into FLOSS, HISP, Ethiopia and developing countries. I discuss
FLOSS related to Ethiopia and I discuss FLOSS related to HISP. Last I dis-
cuss more general theoretical considerations.

Chapter 12 — Conclusion: In this chapter I make an assessment of the
validity of my research. I write some concluding remarks and suggest some
avenues for future research.

Part I

Theory

Chapter 2

Information Systems Theory

Computers have their roots in the natural sciences, and was developed as
a machine to compute numerical mathematics. Computers soon became
more than number crunchers or calculators. They became useful instru-
ments for collecting data, make calculations and present the data to the
user. The computer became an information processing system, which gave
the user more accessible and useful information. Many researchers have
since theorised about the use, functioning and construction of computer
based information systems. There existed information systems before the
computer, but they were not labeled as such. An information system can
potentially be completely paper based. I will focus on computer based ISs,
but I recognise that computers are only one piece in a broader context. It
is this broader context and the interplay of humans and computers that IS
theory seeks to conceptualise.

In this chapter I will present the theoretical background relevant to my re-
search. I will discuss different perspectives used to understand an describe
ISs. I will start with a broad perspective and narrow down to my applica-
tion area. After that I will describe the participatory design strategy for IS
development. Last I will look into perspectives and strategies relevant for
IS development in developing countries.

2.1 Perspectives

In this section I will start with a broad theoretical view and at a fast phase
narrow down to the application domain of my research.

2.1 Perspectives 10

Computers have their origin within the confines of the natural sciences
and its associated theoretical paradigm and methods. This has tended to
give early IS research a technological focus and a positivist research tradi-
tion (Rose 2001). Positivism is a philosophy developed by Auguste Comte
in the beginning of the 19th century, which stated that the only authentic
knowledge is scientific knowledge. As a philosophy on science, it maintain
that true knowledge can only be obtained from the data of sense experi-
ence. The validity of metaphysical speculation is denied. In positivism the
world and the universe is seen as deterministic — they operated by laws of
cause and effect. This causes and effects can be discerned if we apply the
unique approach of the scientific method. The scientific method is believed
to be an objective, value free way of viewing the world. Positivism believe
in the idea that observation and measurement is at the core of the scien-
tific endeavor. The experiment is the key approach of positivism to obtain
observations and measurements under controlled conditions.

Positivism is to day rarely believed in the “pure” form described in the
previous paragraph. In papers relating to IS it is frequently used as a la-
bel to describe a paradigm and methods more akin to the natural sciences
with its belief in the hypothetico-deductive method and quantifiable data.
Gregor (2005) even claim that positivism is not a defensible position in IS.

The author believes that "positivism” should no longer be even
mentioned as a defensible position in discussions of theory or
epistemology in information systems. If what is meant is a sci-
entific perspective, then it is better to say so; to go directly to
writings in the philosophy of science and to examine issues sep-
arately and carefully. The conclusion from this summary of pos-
itivism is that it is not a fruitful source of ideas on theorising in
information systems.

(Gregor 2005, page 6)

As computers spread out of business head quarters and science labs, and
into the society at large the theoretical paradigm and methods in IS have
shifted towards those used in the social sciences. The use of computers
have also grown into fields that are not characterised by mathematical rigor
and predictability. Often IS seeks to capture information in contexts char-
acterised by high degree of change and unpredictability. In other words the
IS seeks to capture information about human society and not nature. This
research paradigm in IS is frequently labeled as interpretivism or construc-
tivism.

Interpretivism and constructivism are closely related to one another and

2.1 Perspectives 11

they reject the existence of theory neutral observations and the idea of uni-
versal laws as those in the natural sciences. This paradigm tend to have
a preference of hermeneutic methods and qualitative data. Theory in this
perspectives is not “discovered” as in “Newton discovered the theory of
gravity”, but it is constructed.

Knowledge consists of those constructions about which there is
a relative consensus (or at least some movement towards con-
sensus) among those competent (and in the case of more arcane
material, trusted) to interpret the substance of the construction.
Multiple '’knowledges’ can coexist when equally competent (or
trusted) interpreters disagree.

(Denzin and Lincoln 1994)

IS relates to the natural sciences because computers are artifacts constructed
with the use of physics, logic and mathematics, and it relates to the social
sciences because it is an artifact used by humans for information processing
and communication. A perhaps more explanatory and accurate label to use
for this two different perspectives is the natural science perspective and the
social science perspective. Which one of this perspectives that is most appro-
priate depends on what you are researching. If the subject of your research
is characterised by high degree of control, predictability and do not have
a high degree of human involvement, then perhaps a natural science per-
spective is most appropriate. This is not true for my research so I opt for a
perspective closer to the social science perspective.

Having decided on a predominantly social science perspective we have to
take what theory is most relevant for our study from the body of theory
concerning IS. Given the high degree of human involvement in the sub-
jects I am investigating a social systems perspective seems appropriate. A
technology deterministic perspective, where the introduction of technol-
ogy is seen as having a predefined effect on the organisation or community
it is introduced to, gives technology a too elevated position. Technology
is shaped by a community and will influence the community where it is
introduced in one way or the other. The technology will again be reshaped
by the community where it is introduced. Social science theory like An-
thony Giddens’ Structuration Theory (ST) (Giddens 1984) is held to be a use-
ful theory for analysis of the change process ignited by the introduction of
information systems into organisations and communities.

In the following subsections I will give a review of literature relating to
the chosen social systems perspective and ST. In the last section I will go

2.1 Perspectives 12

into the application domain of my research. The introduction and devel-
opment of technology take place within a context and in my case I have
three contexts. One is the open source community and the second is the
primary health care organisation of Tigray in Ethiopia. The third context
of relevance is the HISP network and the community centered around the
development of DHIS 2.

2.1.1 Information systems as social systems

Earlier models for measuring and predicting the social impact of technol-
ogy characterised technology as tools, with a direct effect on the organi-
sation where ICT is implemented. This line of reasoning is often focused
on the distinctive features of a technical artifact, and imagines its use and
effects based on this features. In many situations the impact of a technical
artifact have diverged from the imagined effects. The Social Informatics
Report (Kling et al. 2000) explains how introduction of new ICTs in several
instances have failed to achieve it’s goals, because the varied conditions
under which people might use the ICT was not taken sufficiently into con-
sideration.

One key idea of social informatics research is that the "social
context” of ICT development and use plays a significant role in
influencing the ways that people use information and technolo-
gies, and thus influences their consequences for work, organi-
zations, and other social relationships. Social context does not
refer to some abstracted ‘cloud” that hovers above people and
ICT; it refers to a specific matrix of social relationships. For ex-
ample, social context may be characterized by particular incen-
tive systems for organizing and sharing information at work.

(Kling et al. 2000, p.56-57)

Social informatics is an umbrella term for research which relates to the sys-
tematic research on the social aspects of ICT. This line of research point to
the fact that direct effects arguments, that stems from a technological de-
terministic view on technology, have not generalized very well. Studies of
the impact of ICTs usually show “mixed effects”. The experienced “mixed
effects” are in social informatics attributed to differing social and technical
circumstances. It is insufficient to look at ICT’s as technical systems. To be
able to understand and predict the impact of an ICT both social and tech-
nical factors have to be taken into consideration. The social circumstances
a new ICT is going to function in will most likely be non-trivial and the

2.1 Perspectives 13

effect of the ICT will most likely differ from what is predicted. Social in-
formatics aspire to gather empirical data from both successful projects and
from failed projects. This data is then used to explain and understand the
reasons for the success or failures of ICT initiatives. This insights enables
us to develop and improve our work practices.

Sawyer and Rosenbaum (2000) gives a summary of findings from social in-
formatics research in seven points.

1. The context of ICT use directly affects their meanings and roles. Simply, context mat-
ters. The design of ICTs is linked to social and organizational dynamics, and these
dynamics are contextual. This means that an ICT is always linked to its environment
of use.

2. ICTs are not value neutral; their use creates winners and losers Given the contextual
nature of ICTs, it follows that they are often designed, implicitly or explicitly, to
support social and organizational structures.

3. ICT use leads to multiple, and often paradoxical, effects. The contextually-dependent
nature of ICTs suggests that similar ICTs can have different outcomes in different
situations. This also implies that ICT use can lead to both intended and unintended
consequences. For example, new ICTs are introduced to one department in a local
government to improve organizational effectiveness and efficiency. This leads to a
state where that department staff’s work processes soon become enmeshed with the
new ICTs. The departmental staff becomes dependent on the infrastructure to do its
work (the intended effect). However, the lack of systematic maintenance and up-
grading of this infrastructure leads to the ICTs becoming unreliable. This lack of
reliability means that, over time, the office is actually less capable of achieving its
mission (an unintended effect).

4. ICT use has moral and ethical aspects and these have social consequences. The
contextual nature of ICTs means that development and use raises moral and
ethical issues. This set of topics often reflects the most well known of the key
Social/Organizational Informatics issues.

5. ICTs are Configurable — they are actually collections of distinct components. The
term, ICT, actually reflects collections of distinct components. These components —
many of which are nearly commodities — are assembled into unique collections for
each organization (or social unit, depending on the level of analysis). Furthermore,
the multiple functions and ability to reprogram (or alter and extend) these functions
makes any collection of ICTs highly re-configurable.

6. ICTs follow trajectories and these trajectories favor the status quo. The configura-
tional ability of ICTs is underlain by the trajectories of the components. A trajectory
means that any definable component can be seen as an evolving series of products
(or versions). That is, they have a history and a future. And, the status quo means
that preexisting relationships of power and social life are often maintained and
strengthened. Since ICTs are socio-technical entities, their evolution is as much
social history as technical progress.

7. ICTs co-evolve during design/development/use (before and after implementation)
The configurational ability of ICTs also underscores the socio-technical process
of ICT design, development and use is reflected in every stage of an ICTs life. A
system’s use unfolds over time in a form of mutual adaptation between the ICT

2.1 Perspectives 14

and the social system into which it has been placed. This ever-unfolding process, a
“design in use”, also implies the variations in social power that define much of the
discourse between ICT developers and ICT users.

The influence of technology on a community or organisation is not a one
way street. As it is pointed out in the last three items above ICTs are con-
tigured and adapted to varying contexts. The same technical artifact will
have different impact dependent on the social context, and the artifact will
frequently be changed and sometimes be used in ways not imagined by
the creators of the technical artifact. Williams and Edge (1996) elaborates
on how technology is changed by the social context wherein it is applied:

Whereas most contemporary applications of ICT have automated
discrete, well-delimited functions, which can be standardised
and readily obtained through the market, integrated applica-
tions of ICT to conduct a range of activities, can rarely be ob-
tained in the form of standard solutions. Instead, firms must
customise solutions to fit their particular structure, working meth-
ods and requirements. They may be forced to select, and link to-
gether, a variety of standard components from different suppli-
ers. The result is a particular configuration - a complex array of
standardised and customised automation elements. Moreover,
no single supplier has the knowledge needed to design and in-
stall such complex configurational technologies. Instead, this
knowledge is distributed amongst a range of suppliers (of dif-
ferent technological components) and a range of groups within
the firm. Configurations are highly specific to the individual
firms in which they are adopted.

2.1.2 Structuration theory in the field of IS

One of the principal aims of structuration theory (Giddens 1984) is to rec-
oncile the two main strains in social theory. One strain of social theo-
ries place their focus on the individual, the human agents and human ac-
tion, and how human agents and human action forms and remakes society.
The second strain of social theories emphasises society, the structure of so-
cial systems, and how this structure enables or constrains human action
(Walsham 1993). In this section I will investigate how ST can be applied in
the IS field and specifically in my case study.

I will not dig deep into ST as this is not within the scope of this thesis.
Rose (2001) have given an explanation of the facets of ST important to IS.

2.1 Perspectives 15

From this selection of facets I will select only those I deem relevant for my
research. The selected facets I will describe in this section.

Agency

Human agency, in Giddens formulation, is the “capacity to make a dif-
ference” (Rose 2001). The capacity to make a difference is intimately con-
nected with power. If you do not have this capacity you are effectively
powerless. Power involves the exploitation of resources. There are two
kinds of resources; authoritative resources and allocative resources. Au-
thoritative resources is the power to coordinate the activity of human agents.
Allocative resources is the power to control material products or aspects of
the natural world. Power is not in it self a resource.

Much of the behaviour of human agents are subject to routines. Human ac-
tion occurs as a “continuous flow of human conduct”. This routines are
replicated and changed over time and space. The human agent is con-
sciously and unconsciously monitoring the routines he or she is following.
Action have intended and unintended consequences. The human actor is
continually altering the theories by which he or she is acting and doing
sense making, in light of experience (Giddens 1984):

All social actors, it can be properly be said, are social theorists,
who alter their theories in light of experience — part of which
experience is social theory. All theorists are likewise actors.

This is called the double hermeneutic by Giddens.

Structure

Giddens gives the following definition of structure (Giddens 1984):

[Structure are] rules and resources recursively implicated in so-
cial reproduction; institutionalised features of social systems
have structural properties in the sense that relationships are sta-
bilised across time and space.

Structure exist only as memory traces and is instantiated, or made real, only
in action. Social systems, which is reproduced social practises, do not have
structures but have structural properties. The memory traces of structure
orients the conduct of knowledgeable human agents. Structure can both be
constraining and enabling.

2.1 Perspectives 16

The duality of structure

Having explained Giddens definition of agency and structure we now turn
to one of the principal aims of ST, the reconciliation (or bridging) of the two.
Giddens takes the, to some extend, opposing ides of structure and agency
and recast it into a duality. Structure and agency are recast as two concepts
that are depended on each other and are mutually changing each other
over time and space. In Figure 2.1 social structure and human interaction
are broken down into three dimensions, for the purpose of analysis.

Structure Signitication Domination Legitimation
. I Intspretatve 1 [R R A
Wodalty) 1 _sopeme ___ 4 AT i m o)

Interaction Communication ‘ ‘ Power | | Sanction

Figure 2.1: Dimensions of the duality of structures - Giddens 1984

Rose (2001) gives the following explanation to Figure 2.1:

Thus, as human actors communicate, they draw on interpre-
tative schemes to help make sense of interactions; at the same
time those interactions reproduce and modify those interpreta-
tive schemes which are embedded in social structure as mean-
ing or signification. Similarly the facility to allocate resources is
enacted in the wielding of power, and produces and reproduces
social structures of domination, and moral codes (norms) help
determine what can be sanctioned in human interaction, which
iteratively produce structures of legitimation.

Time space distanciation

The process of structuration is the evolution and reproduction of the du-
ality of structure over time and spaces. The further the social practises
embedded in a duality of structure is extended across time and space, the

2.1 Perspectives 17

better established they are, and the more likely to be thought of as an insti-
tutional feature of social life. People are aligned into a structure through so-
cial and system integration. Social integration refer to a relation of mutual
dependence between agents, where the agents are all physically present.
System integration refer to a relationship of mutual dependence between
agents physically and/or temporally situated in different settings.

Critique of ST

An important critique of ST put forward by social theorists is the problem
of reducing structure to action and consequently how to document an in-
stitution apart from action (Rose 2001). ST is also criticised for giving no
direct answer to questions like “why do some forms of social reproduction
succeed and become institutionalised, and others do no?”. ST can help in
understanding a current situation, but is criticised for not providing a con-
ceptual base for developing a “critical” stance. ST give a picture of how
things are, but not how it should be.

ST is a theory at a very high abstraction level. Consequently ST is criticised
for been difficult to apply in any practical way to help in understanding
the social context relevant for IS, and perhaps even help to predict conse-
quences of an ICT. In order for ST to be useful in an applied science as IS
should be, ST must be able to give understandings that can contribute to
developing best practices and give insight to IS practitioners.

How to apply this in IS

Given ST’s high level of abstraction, and given the high level of accuracy
and find grained understanding required to make a computer based IS, it
naturally follows that ST have to be simplified to be useful. ST has been
used to theorise about ICT’s and to analyse empirical situations

(Rose and Scheepers 2001). As it is of fundamental importance to under-
stand the context in which an ICT are going to be introduced, or whether
an ICT should be introduced in the first place, it is helpful to be given a
framework to aid in the analysis of a situation.

In his book Walsham (1993) present a framework for analysis which uses
ST to connect the social context and the social process. The framework is
lined out in Table 2.1. Here content is what the technological deterministic
perspective focuses on, namely what an organisation “produces” and how
they do it, and the software needed to make this process more effective.

2.1 Perspectives 18

Key Components of Associated Conceptual Elements
Change Framework

Content Organisation — products/processes/systems
Information systems - hard-
ware/software/systems

Social Context Web models - social rela-

tions/infrastructure /history
Multilevel contexts

Social Process Culture — subcultures /multiple meanings
Politics — control and autonomy /morality

Context/process Structuration theory — action and structure duality
Linkage
IS and modalities:

* embody interpretive schemes
¢ provide co-ordination and control facilities

* encapsulates norms

Table 2.1: Walsham’s analytical framework

The social context and the social process brings the social informatics per-
spective into the picture. By using the duality of structure Walsham brings
the social context (structure) and the social process (agency) together. Wal-
sham places IS in the modality realm that mediates between structure and
agency.

Referring to the time space distanciation property of ST Rose and Scheepers (2001)
uses Figure 2.2 to map the degree of “embeddednes” of social practises. As

a social practice becomes relatively stable it will be a more likely candidate

for an IS. An example of a social practice where an IS is used to structure the
interaction is the practice of sending bug reports to an open source project.
This practice is mediated by what is commonly called bug tracking sys-
tems, or issue management systems. When an IS is used to support a social
practice it will most likely make the practice more structured, and less re-
sponsive to change.

Rose and Scheepers (2001) states that ICT is a powerful influence promot-
ing time space distanciation. Discourse is the medium of structuration, it
is through discourse the process of structuration is mediated. Interaction

2.1 Perspectives 19

Space
widespread
stabilising
R4
Time ,
brief — enduring
local

Figure 2.2: Social practices stabilising through time and space - Rose 2001

between agents are mediated by discourse, and the actors conception of
the modalities that give a sense of structure are changed and replicated by
discourse. Some of the more formal mediating roles of discourse can be
supported by ICTs. Rose explains more on how IS relates to the time space
distanciation of the duality of structures:

[Information technology] does not embody structure. However,
as a designed and managed artifact it is constituted, by human
agents thorough a set of social practices involving IS profession-
als and others. ...As s product of human agency, ICT! will in-
evitably reflect the structures of the social system that designs
and manages it, and their interpretation of the social system
that it is intended to serve. Those interpretations, once embed-
ded in silicon and software, may become relatively inflexible,
compared to the development of social practices, and it is this
inflexibility which is the source of the influence of ICT.

(Rose and Scheepers 2001, p.226):

2.1.3 Community- and Organisational Informatics

Having now spent some time in the abstract realm of social theory it is
now time to get down to more specific theories relevant to my research.

1Originally labeled IT, but I changed it to ICT

2.1 Perspectives 20

My research domain is in three primary areas, the open source community,
the HISP network and the primary health system of Tigray in Ethiopia. To
get more insight into this three situation I deem it relevant with some basic
theory from Community Informatics (CI) and Organisational Informatics (OI).

Organisational informatics

Organisational informatics is the older of the two. It was first during the
nineties that computer came into widespread use. Before that time com-
puters existed mainly within the confines of an organisation. So naturally
research on ICT were also done within this confines. The focus was on
the introduction of new ICTs and on how this influenced the organisation.
Kling defines organisational informatics as follows:

Organizational informatics refers to those social informatics anal-
yses bounded within organizations, where the primary partici-
pants are located within a few identifiable organizations. Many
studies of the roles of computerization in shaping work and or-
ganizational structures fit within organizational informatics.

(Kling et al. 2000, p.15)

Hanseth and Monteiro (1998) use the term Information Infrastructure (II) to
denote the fact that computerised ISs have evolved into something more
than the traditional monolithic system. Both within and outside the con-
fines of an organisation ISs is made from a multitude of different technolo-
gies. II do not only refer to the technical components of a computer net-
work, but it refers to the human and social components as well. When a
new IS is introduced into an organisation there will most likely be an exist-
ing infrastructure that the new IS have to fit together with. The existing Il in
an organisation is called the installed base by Hanseth and Monteiro (1998).
In order to give a definition of II they identify six aspects characteristic of
IIs:

1. Infrastructures have a supporting or enabling function.

2. An infrastructure is shared by a larger community (or collection of
users and user groups).

3. Infrastructures are open.

4. IIs are more than “pure” technology, they are rather socio-technical
networks.

2.1 Perspectives 21

5. Infrastructures are connected and interrelated, constituting ecologies
of networks.

6. Infrastructures develops through extending and improving the in-
stalled base.

In parallel with what we have seen in connection with the replication and
changing of social systems in ST IIs evolves over time. If a social system
have stabilised it will be difficult to change, and drastic changes will often
be rejected. As we have seen, stabilised social practices are good candidates
for ISs, and the ISs will serve to stabilise the social practice even more. This
implies that the existing II, and by extension the existing social practices,
will heavily influence how a new IS can be designed and how it will evolve.
The successful introduction of new ISs are heavily dependent on how well
the ISs fit with the installed base.

Community Informatics

The now widespread availability of computers in the developed world
have brought the attention of researchers to phenomenon like virtual com-
munities, communities that interact through the computer and that rarely
or never meet face to face. In Giddens terminology this communities have
strong system integration, but week social integration. It is my opinion
however, that mediums like e-mail, Internet Relay Chat (IRC) and Instant
Messaging (IM) diffuses the difference between social and system integra-
tion. This forms of interaction, though being physically and/or temporally
situated in different settings, have a sense of more or less “face to face”
interaction.

Community informatics is more than the research on virtual communities,
it is the study of how ICT can be used to support more traditional commu-
nities. Wikipedia gives the following definition of CI?:

Community Informatics, also known as community network-
ing, electronic community networking, community-based tech-
nologies or community technology refers to an emerging set of
principles and practices concerned with the use of Information
and Communications Technologies (ICTs) for personal, social,
cultural or economic development within communities; for en-
abling the achievement of collaboratively determined commu-
nity goals; and for invigorating and empowering communities

2See: http://en.wikipedia.org/wiki/lCommunity_informatics

http://en.wikipedia.org/wiki/Community_informatics

2.1 Perspectives 22

in relation to their larger social, economic, cultural and political
environments. It can be considered as an socially-oriented and
emergent sub-discipline of Informatics, itself a term with a wide
variety of interpretations.

For my research it is more relevant to look at virtual communities as this is
the kind of communities most common in the open source context. When it
comes to developing countries, the use of ICT to empower local communi-
ties to reach collaboratively determined community goals is an interesting
subject, and one that is being worked on. Gurstein (2003) proposes a com-
munity informatics strategy to reduce, or as he puts it, to go beyond the
digital divide. I will review literature relating to the digital divide in sec-
tion 2.3. Interesting as this is, it is not central to my thesis. My primary
focus will be on Virtual Community Informatics (VCI).

Proulx and Latzko-Toth (2005) digs into the term “virtual community”. This
paper cites a traditional definition of community and gives the following
explanation.

[In the traditional definition of a community] we are confronted
by a collective founded on geographical and emotional prox-
imity, involving direct, concrete, and authentic interaction be-
tween its members.

(Proulx and Latzko-Toth) then goes on to investigate the meaning of the
qualifier virtual to the word community. They retain three principal ap-
proaches to virtuality. In the first approach, the virtual is subordinated
to the real. The virtual is a simulation of reality and therefor a false approx-
imation. The second approach turns this on the head and says that “the
virtual is to the real as the perfect is to the imperfect”. The technologies
of the virtual are perceived as liberatory. Global communication networks
liberates human activity from the constraints of materiality, space and time.
These two approaches rest upon a strict separation of real and virtual and
are both imprinted with technological determinism.

The third approach recast the strict separation of the real and the virtual
into a reality where the actual and the virtual is in a circular and produc-
tive relationship. This third approach works towards a “more textured un-
derstanding of the varying forms of virtuality worked through different
technologies in different times and places”.

The urban communities are in a sense “virtual” communities. The commu-
nities have emotional proximity, but do not necessarily have geographical

2.2 Participatory design 23

proximity. The people in a an urban community is bound together by com-
mon interest, like a church or a sport club, or bound together by friendship.
These people can live all across the city. The people living in the same block
and on the same street, which is a community in the traditional sense, can
be emotionally far apart.

Unlike the traditional community bound by geography, like a village, where
the commitment of the members necessarily have to be for a relatively long
term, the commitment of the members in electronic collectives is generally
more fluid. People are generally members of a multitude of communities,
like a church, a family, a professional community, an academic community,
a Linux user group etc. All these communities can have a level of virtuality,
a Linux user group will be more virtual than a family. Virtual communities
is like a desert watering-hole, where you meet, congregate and move on.

For most practical purposes I will focus on virtual communities mediated
by ICT. I will use the definition of virtual communities proposed by
Lee, Vogel, and Limayem (2002) as a working definition:

[A virtual community is] a technology-supported cyberspace,
centered upon communication and interaction of participants,
resulting in a relationship being built up.

This definition is a synthesis of definitions used by various authors. A vir-
tual community being a technology-supported cyberspace specify that a
distinguishing feature of a virtual community compared to regular com-
munities, is that a virtual community is mediated by computer networks.

2.2 Participatory design

According to Kling there is a significant body of organisational informatics
research about the importance of user involvement in the design process.
By involving users in the whole design process the hope is that the ICT
will be more attuned to the needs of the people that are actually going to
use it. System development based in the technological deterministic school
was seen as a defined and controllable process with clearly defined phases.
Kling argues that user feedback should be sought continuously.

Most professional and educational literature still defines user
involvement as assessing user requirements for a system on at

2.2 Participatory design 24

the beginning of the design process. However, in these early as-
sessments, many users emphasize the major functions and rou-
tines of their work, overlooking important variations or excep-
tions. If user feedback is not continuously sought throughout
the design process, then a new system is likely to not effectively
handle overlooked exceptions, complexities, and nuances.

(Kling et al. 2000, p.35)

Scandinavian research projects have traditionally put a strong emphasis on
user involvement. In the Scandinavian research tradition user involvement
has been discussed and practices in the last 30 years. This approach to
design has been given the label Participatory Design (PD).

Bjerknes and Bratteteig (1995) list the three reasons normally given for user
participation in design:

1. Improving the knowledge upon which systems are built.

2. Enabling people to develop realistic expectations, and reducing resis-
tance to change.

3. Increasing workplace democracy by giving the members of an organ-
isation the right to participate in decisions that are likely to affect their
work.

The two first reasons are based on practical considerations, common to sev-
eral system development approaches. The third reason is based on a belief
in democracy and that it is a valuable goal to increase workplace democ-
racy. To achieve this PD should involve future users in decisions taken
during system development (Bjerknes and Bratteteig 1995). The third rea-
son give PD a strong political touch and potentially makes it deeply con-
troversial from a management perspective.

PD have it’s background in the Scandinavian trade union projects in the
early 70’s. Within the Scandinavian IS research tradition the main theoret-
ical contribution have come after projects, as researchers have reflected on
the projects. The projects conducted after the trade union projects can be
organised into two different trends; the design for the skilled worker, and use
of computers in an organisational context.

The first trade union projects had some characteristics in common. This
projects were mainly concerned with the organised work force and produc-
tion. They claimed that there is a antagonistic relationship between labor

2.2 Participatory design 25

(the workers) and capital (the management), and wanted to strengthen the
labor side in order to make the struggle more even. They claimed that re-
searchers have a duty to support those with less power, and were striving
for a democratic research and development approach. One of this project
was initiated by the Norwegian Iron and Metal Workers” Union (NJMF) with
the objective of applying a workers” perspective on development and in-
troduction of new technology (Bjerknes and Bratteteig 1995).

Two projects represents the next generation of projects; UTOPIA which rep-
resents the design for the skilled worked trend, and Florence which represents
the use of computers in an organisational context trend. Both trends saw it
as necessary to create alternative technologies, to fight vendors” monopoly.
The trade union projects did improve workers” influence on technology,
but to increase this influence the focus was shifted to the form and content
of the work process.

The UTOPIA project was conducted between 1981 and 1984 as a joint re-
search project involving several Scandinavian research institutions and the
Nordic Graphical Union. The project focused on work processes concerned
with page layout and image processing in the newspaper industry. This
project was laboratory based, where trad union representatives would par-
ticipate as skilled workers. In the laboratory, mock-ups and simulations of
computer based working environment was used. This approach called de-
sign by doing, allowed the graphical workers to express their craft skill by
demonstrating their work. At the end of the project the tool perspective was
developed:

The computer should be a tool for the skilled worker, and the
worker should be in control of the tool.

(Bjerknes and Bratteteig 1995, p.78)

The Florence project focused on the nursing profession and was conducted
from 1984 to 1987. Essential to the project was mutual learning. This is
a process were the users and the designers learn from each other, which
is important to PD. The Florence project started out focusing on a single
profession, but a strict bias towards the nursing profession was difficult to
maintain. Physicians and nursing assistance was also involved. The project
discussed the IS relating to the organisation as a whole.

The totality of an organisation can be addressed in two ways,
through a management perspective or by emphasising that there
are several differing perspectives depending on various stake-
holders’ organisational positions and roles.

2.2 Participatory design 26

(Bjerknes and Bratteteig 1995, p.81)

It is important to note that an important aspect of user participation is the
users’ sense of ownership over the system.

...the users’ sense of ownership is significant for the sustain-
ability of the system. Lorenzi and Riley suggest that technically
competent [ICT-based] systems may be woefully inadequate if
their implementation is resisted by people who have low psy-
chological ownership of that system. On the other hand, people
with high ownership can make a technically mediocre system
function fairly well.

(Nhampossa 2006, p.68)

In the European tradition of PD there are two methods; the socio-technical
approach and the collective resource approach. The socio-technical approach
considers the organisation as a whole and stresses that employers and em-
ployees have a common interest in developing useful ISs and therefor seeks
consensus among the different stakeholders of the system. The collective
resource approach emphases the conflict of interest between employers and
employees. This approach highlights questions about power, control and
democracy at the workplace and regards it as the researchers’ responsibil-
ity to support the weaker party. (Bjerknes and Bratteteig 1995, p.83) and
(Nhampossa 2006, p.69-71).

The US tradition of PD have downplayed democratic empowerment, that
is to give workers decision making power, and focus more on functional
empowerment, that is to empower workers to have more freedom in how
to effectively meet the goals set by management. In the US, focus shifted
towards approaches like contextual design which, while maintaining the
importance of user involvement, gave the prerogative to the expert de-
signer and emphasised management goals like efficiency, productivity and
flexibility (Spinuzzi 2002). In the US, traditions like user-centered design
and customer-centered design have emerged. This tradition do not focus on
democracy and empowerment, but on making useful products for the cus-
tomer or end users. Xerox Palo Alto Research Center (PARC) was an early
supporter of PD in the US (Asaro 2000).

2.2.1 Prototyping

A very important method used to facilitate effective communication be-
tween users and developers is the use of prototypes. Both the UTOPIA and

2.2 Participatory design 27

the Florence project used prototyping as part of their strategy to facilitate
user participation. In the Florence project prototyping reduced misunder-
standings in the communication between the workers and the researchers
and it helped in clarifying the needs of the nurses. The UTOPIA project
used mock-ups as prototypes of a future system in order to make a require-
ment specification. In this section I will describe the two primary types
of prototypes that are commonly identified; The throwaway prototype and
the evolutionary prototype. Last I will present the different ways prototypes
have been used in PD.

Throwaway prototyping is also called rapid prototyping. This class of pro-
totypes is not meant to be a part of the finished system. It is only meant
to give a visual illustration of the system, or parts of the system. This is
done in order to facilitate communication between users and designers.
The UTOPIANn mock-ups are an example of this class of prototypes.

Rapid Prototyping involves creating a working model of vari-
ous parts of the system at a very early stage, after a relatively
short investigation. The method used in building it is usually
quite informal, the most important factor being the speed with
which the model is provided. The model then becomes the
starting point from which users can re-examine their expecta-
tions and clarify their requirements. When this has been achieved,
the prototype model is ‘thrown away’, and the system is for-
mally developed based on the identified requirements.

(Crinnion 1991, p.17)

Throwaway prototypes can be further classified according to their fidelity,
that is how close the prototype resembles the actual planned design. Ex-
amples of low fidelity prototypes are paper based prototypes. Using paper,
scissors, pens, tape etc the user interface can be pasted together in collab-
oration with end-users. High fidelity prototypes are interactive and sim-
ulates parts of the planned design. A high fidelity prototype can be im-
plemented using a tool for building a Graphical User Interface (GUI) which
looks like the target system, but have now functionality, this is called hori-
zontal prototype. The prototype can focus on only part of the functionality,
which is called a vertical prototype (Rudd et al. 1996).

Evolutionary prototyping is a different way of thinking about prototypes.
Here the prototype is meant to be a part of the target system. The proto-
type is coded with a quality level high enough for inclusion in the target
system. Evolutionary prototyping is iterative and in each iteration only

2.2 Participatory design 28

well understood requirements are implemented. After the well understood
requirements are implemented chances are that you will understand the
other requirements better. The iteration goes on indefinitely. The system is
put into use as soon as a minimum number of requirement are met, and is
constantly refined based on experience from using the system (Davis 1992).

For a system to be useful, it must evolve through use in its in-
tended operational environment. A product is never ‘done’, it
is always maturing as the usage environment changes ... we of-
ten try to define a system using our most familiar frame of refer-
ence — where we are now. We make assumptions about the way
business will be conducted and the technology base on which
the business will be implemented. A plan is enacted to develop
the capability, and, sooner or later, something resembling the
envisioned system is delivered.

(Software Productivity Consortium 1997, p.6)

In the PD tradition the importance of prototypes to facilitate user - devel-
oper communication has long been understood. In Scandinavia

Bodker and Gronbeek (1991) proposed cooperative prototyping. The proto-
typing process is seen as a cooperative activity involving users and design-
ers, where the users and designer should be equally active drawing on their
different skills. Cooperative prototyping focus on high fidelity throwaway
prototypes, and is very design focused.

In the US two notable prototyping techniques were developed; Plastic In-
terface for Collaborative Technology Initiatives through Video Exploration (PIC-
TIVE) and Collaborative Analysis of Requirements and Design (CARD). PIC-
TIVE and card are both focused on building low fidelity throwaway proto-
types and resembles game playing. (Spinuzzi 2002)

2.2.2 Limitations and challenges with participatory approaches

The value of participation have broad recognition in the IS literature, so
much that Heeks (1999) gives it the status of orthodoxy. Like other methods
that have received wide recognition PD has been in the danger zone of
becoming a “silver bullet” method, a method that is always relevant and
beneficial. In practice participation is often beset with problems. In this
section I will present some of the problems articulated in the IS literature.

Inherent within PD are conceptions of democracy and empowerment. All
stakeholders in an IS should be given influence on the design. This implies

2.3 Information Systems and developing countries 29

that a team should include all stakeholders and that they must participate
on equal terms. In contexts where there is a gap between this conceptions
and the realities of the organisation, the ideal-reality gap can make partici-
pation unattainable or severely hampered.

Heeks, Mundy, and Salazar (1999) gives some examples of situations where
user-participation techniques are unlikely to work well:

® Users lack information about participative techniques and about the
new information system.

* The objectives of senior staff are not to share power and the values of
the organisation are authoritarian and hierarchical.

® Users lack the skills and confidence necessary to engage in participa-
tive processes.

* The management style and organisational structures of the organisa-
tion are highly centralised.

¢ The organisation lacks the time and money to invest in participative
approaches.

In his paper Heeks (1999) suggest three question that should be asked when
participation are considered:

1. What is the political and cultural context?
2. Who wants to introduce participation, and why?

3. Who is participation sought from? Do they want to, and can they,
participate?

By asking this questions factors limiting the value of participation can be
revealed. Heeks (1999) explains situations that limits the value of participa-
tion and problems with participation; on who is chosen to participate, and
the difference between participants in their ability to make a difference. I
will not go through them here, but this points are important to be aware of
when participation is considered.

2.3 Information Systems and developing countries

As already mentioned multiple times the context of an IS matters. As my
research takes place within Ethiopia, which definitely is a developing coun-
try, it make sense to find some challenges commonly met in developing

2.3 Information Systems and developing countries 30

counties when implementing an IS. Developing countries are very diverse,
so I will have to paint with a broad brush here. Challenges meeting devel-
oping countries are many, but I will focus on challenges in connection with
ICT and IS. In this section I will first explain the importance of social infor-
matics and cultural understanding when working with ICT in developing
countries, then I will focus on the worthy goals of increasing democracy
and empowering the marginalised through ICT. After that I will review
some literature about the digital divide. Last I will review literature about
the transfer or translation of western technology into the different contexts
in the developing world.

Walsham (2001) argues that social systems methodologies that emphasises
the importance of the organisational, cultural, social and political context
are highly suitable for developing countries. Culture are often portrayed as
constraining, inhibiting the effective use of technology, by western analysts.
This perception is marked by heavy cultural bias. This does not mean that
we should naively accept all aspects of a culture, but we should think twice
before labeling aspects of a culture as limiting. Perhaps the technology is
inappropriate, not the culture. Most of the worlds ISs are made for western
markets. From ST we can say that this ISs seeks to support social practices
common in the western world.

Walsham emphasises the importance of obtaining deep understanding of
the local culture when working with ICT in a particular context. A lot of
understanding can be obtained by reading extensively about a particular
region or country, but to really understand the subtleties of a culture and
its social rules you have to immerse yourself in the culture.

There are various way in which cultural understanding can be
developed, not least by living in a particular country, and thus
being immersed in the culture. ...An expatriate manager of
a multinational company, staying at a five-star hotel, may be
physically present in a particular country, but may have little
access to or interest in local culture. Understanding through
immersion require a starting point of respect for local cultural
values, and considerable effort to understand these.

(Walsham 2001, p.201)

Braa (1997) argues why social systems methodologies are even more ap-
propriate in the developing world than in the developed world. The social
systems in the developing world tend to be more fleeting and informal. Sta-
ble structures are easier to formalise, and developing countries tend to have
more unstable structures. As mentioned earlier, the more stable a structure

2.3 Information Systems and developing countries 31

is the better candidate for an ICT it is. Within developing countries devel-
opment can be at very different stages, with substantial differences between
different regions and between urban and rural areas.

Braa argues that the Scandinavian participatory approach to system devel-
opment can also be useful in developing countries. The Scandinavian ap-
proach focus on the local scale, process, empowerment and mutual learn-
ing. A typical scenario in developing countries “40 people, 20 units and 1
computer”. This makes ISs into predominantly social systems, with some
computerised support. With few computers and little ICT experience the
need for support/training is important and will have to be established dur-
ing the development process. IS development in developing countries need
to be rooted in the local social system and driven from within. To attain
sustainability a process which leads to empowerment and a sense of own-
ership towards the IS have to be cultivated.

Kimaro and Titlestad (2005) introduces the concept of participatory customi-
sation. It is within the same tradition as PD, but shifts the focus from de-
signing a system from scratch into adapting a preexisting system to a local
context. Users, that are not computer savvy, should be able to make basic
changes.

Customisation means that the intended users change the sys-
tem design in order to reflect their work practices and needs. The de-
sign of an already existing system is customised with user par-
ticipation where intended users, not necessarily with high tech-
nological skills, are initially trained to be able to participate.

Because of limited resources in developing countries it makes sense to adapt
an already existing system, rather than building from scratch. This ap-
proach have challenges similar to other participatory approaches, like mo-
tivating and selecting the right participants, but it is even more important
that the participants develop basic computer skills. A customisable system
should have the ability to easily implement visible changes.

2.3.1 The digital divide

The digital divide is the increasing gap between the people that do and
the people that do not have access to computers and computer communi-
cation. This do not only refers to computers and computer networks, but
also the knowledge needed to make use of computers. There is a digital
divide between countries, between the developed and developing world.

2.3 Information Systems and developing countries 32

Within countries there is a digital divide between urban and rural areas,
this is especially evident in the developing world. There is also a digital
divide between the different strata of society, like between educated and
uneducated people. (Gurstein 2003)

If the digital divide is not bridged it is believed that marginalised groups
might become even more marginalised. ICT gives those with the ability to
effectively use the technology an advantage compared tho those who are
not able to effectively use ICT. A popular label for the time we live in is the
information age and ICT gives access to a vast body of information, through
the Internet for the most part. The C in ICT is also important through tech-
nologies like the Internet and to a lesser extent through conventional com-
munication technologies like a telephone (fixed or mobile), you can com-
municate with people all over the world. You can promote your views and
explore information about subjects that interests you, or you can sell hand-
icraft or buy a digital camera. In other words you can participate in an
emerging virtual marked and a global virtual community. The hope is that
the bridging of the digital divide will improve social and economic equal-
ity, academic advancement and self improvement, economic growth and
democracy®.

The arguments used to advocate the importance of bridging the digital di-
vide are flavored by techno-optimism. Even if digital divide proponents
states that it is not a panacea they non the less predicts that ICTs will have
a substantial positive impact. Gurstein (2003) argues that the digital divide
rhetoric to narrowly focuses on access to computers and the Internet, and go
as far as to conclude that the concepts and strategies underlying the notion
of the digital divide are little more than a marketing campaign for Internet
service providers. In his article Gurstein argues for a shift from a narrow
focus on access to a focus on what he labels effective use. Effective use he
defines as follows:

The capacity and opportunity to successfully integrate ICTs into
the accomplishment of self or collaboratively identified goals.

Warschauer (2002) gives three case examples where efforts at improving
peoples life through ICT had disappointing results due to the lack of con-
sideration of the socio-technical context of the case sites. This three cases
too narrowly focused on providing hardware and software. Warschauer
have categorised the resources needed to make effective use of ICT into
four categories illustrated in Figure 2.3. This resources have an iterative

Have a look at http://www.digitaldivide.org/, http://www.digitaldivide.net/ and
http://www.bridgethedigitaldivide.com/ for more information about the digital divide.

http://www.digitaldivide.org/
http://www.digitaldivide.net/
http://www.bridgethedigitaldivide.com/

2.3 Information Systems and developing countries 33

relationship with ICT which can lead to an upward or downward spiral to
the effective use of ICT.

Physical Digital Human Social
Resources Resources Resources Resources
{Computers and (Relevant Content {Literacy and Education) (Community and

Telecommunications) in Diverse Languages) Institutional Support)

NN L

Effective Use of ICTs to Access, Adapt,
and Create Knowledge

S 7 NN

Physical Digital Human Social
Resources Resources Resources Resources
{Computers and (Relevant Content {Literacy and Education) (Community and

Telecommunications) in Diverse Languages) Institutional Support)

Figure 2.3: Effective Use of ICTs by Warschauer

The organisation Bridges which is a leading Non-Governmental Organisation
(NGO) in the application of ICTs to economic and social development, links

effective use to the term e-readiness®.

With the specter of the growing digital divide looming large,
world leaders in government, business, and civil society orga-
nizations are harnessing the power of information and commu-
nications technology (ICT) for development. They seek to im-
prove their countries” and communities” e-readiness — the abil-
ity for a region to benefit from information and communications
technology. It is increasingly clear that for a country to put ICT
to effective use, it must be ‘e-ready’ in terms of infrastructure,
the accessibility of ICT to the population at large, and the effect
of the legal and regulatory framework on ICT use. If the dig-
ital divide is going to be narrowed, all of these issues must be
addressed in a coherent, achievable strategy that is tailored to
meet the local needs of particular countries.

4See: http://www.bridges.org/e_readiness_assessment

http://www.bridges.org/e_readiness_assessment

2.3 Information Systems and developing countries 34

2.3.2 Technology transfer/translation

In order to bridge the digital divide technology has to be “transferred” one
way or the other. The developed countries are driving technological inno-
vation while the developing countries are falling behind. The process of
transferring the technological artifacts and “know how” from the devel-
oped to the developing world are frequently labeled technology transfer.

Different perspectives have been used to understand the technology trans-
fer process. Nhampossa (2006) discusses three perspectives; diffusion, trans-
fer channels and transfer life-cycle. The diffusion perspective argues that
the adoption of technology tend to follow a S-shaped curve. This per-
spective give a prominent position to the individual adopter, and do not
take the social system where the diffusion takes place into account. The
transfer channels perspective describes technology transfer as being facili-
tated through channels like sale of technical artifacts, foreign investments
and education. This explains technology transfer as a one way sequen-
tial process, and it suggest that the success or failure of ICT project can be
explained by the effectiveness of the different channels. For the third per-
spective, the technology life-cycle perspective, I will give a more detailed
explanation.

In their paper on donor-funded ICT transfer Baark and Heeks (1998) have
derived a conceptual framework that they label information technology trans-
fer life-cycle. This framework is visualised in Figure 2.4. Because of the reg-
ular infusion of new technology the process is depicted as cyclical and seen
as a continuous process. Each cycle have up to five phases:

1. The technological requirements are identified and the different alter-
natives for new technology are surveyed. Based on these assessments
the appropriate technology are chosen.

2. The chosen technology are purchased and installed. This often in-
clude some training and consultancy to assist in the installation.

3. Assimilation and use. The goal of this phase is to ensure that the peo-
ple who work with the technology understand how the technology
works, how to use it and how to maintain it.

4. Depending on the technology and the planned use of it there might be
a need for adapting the technology. For context sensitive technology,
which ISs most often are, this is a fundamental part of the project. For
ICT specific projects this phase helps to build local ICT capabilities.

2.3 Information Systems and developing countries 35

5. When the recipients master the technology they can transfer the tech-
nology to other organisations and make innovative changes to the
technology, or even make new technologies.

Choice of
technology

piﬁusio_n/ Purchase and
innovation installation

Assimilation
and use

Adaptation (<=

Figure 2.4: The Information Technology Transfer Life-cycle by Baark &
Heeks

Nhampossa (2006) advocate a fourth perspective, the technology translation
perspective. He argues that the previously mentioned three perspectives
are limited due to the following reasons:

¢ Technology are treated as “black box”. Technology is seen at a super-
ficial level, with to little emphasis on the technical specifics.

¢ Technology transfer is seen as a one way sequential process. Technol-
ogy is created in developed countries and transferred to developing
countries to help them “catch up”. This view tend to disregard the
political brokering and negotiation needed to make things happen.

¢ The intra-organisational conditions are not taken sufficiently into con-
sideration.

¢ The diffusion perspective sees individuals as de-linked from the socio-
technical context and fails to recognise the technological learning which
may result from the transfer process.

¢ The technology transfer process is seen as one giant step from devel-
oped to developing countries rather than series of incremental and

2.3 Information Systems and developing countries 36

interconnected steps. Technology developed in the west are often in-
scribed with western assumptions of rationality. This technologies
cannot be replicated, but have to be translated.

Technology created in developed countries are designed for social systems
quite different from the realities in developing countries. For strongly con-
text sensitive technologies like health information systems this poses real
problems. Heeks (2002) calls this design mismatch a design-reality gap, and
use this to explain why most ISs in developing countries fail either totally
or partially.

The technology translation perspective is seen as the process of cultivating
sustainable networks. For a technology translation process to be successful
the technology and the surrounding network must have the capacity to
endure over time and space, in other words be sustainable.

Technologies or systems become sustainable if they are insti-
tutionalized in the sense of being integrated into the everyday
routine of the user organization. However, sustainable technol-
ogy or systems need not only be institutionalized, but also need
to be flexible in order to allow for changes as the user needs
them.

(Nhampossa 2006, p.57)

Nhampossa defines technology transfer as a process defined by three point.

1. The initiative should be designed as an incremental and context sen-
sitive process, carried out in rather small steps.

2. Translation represents an iterative and evolving long term process,
having implications for both sustenance and scale issues.

3. Technology translation includes building and supporting heteroge-
neous socio-technical networks and ensuring indigenous capacity build-
ing.

A key characteristic of this definition, Nhampossa argues, is the need to bal-
ance flexibility and stability. Sustainable systems must be institutionalised
and at the same time remain flexible enough to accommodate changes oc-
curring over time and space. Relating to ST this need for balancing stability
and flexibility can be expressed as stabilising social systems, but at the same
time be able to adapt to changes in the social practices. ICTs are best suited

2.3 Information Systems and developing countries 37

for stabilised social systems, but the social systems in developing countries
tend to be more unstable. This lead me into thinking that the process of
technology translation involves making the social system more stable and
at the same time making the ICT more flexible.

Nhampossa (2006) further identifies four key influences that are influenc-
ing and influenced by the process of technology translation.

Legacy system and installed base Organisations frequently have legacy sys-
tems which are based on outdated technologies. This systems often
have high business value because they have important business rules
inscribed into them, and is an important part of the current social
practices within the organisation. This systems can be expensive to
maintain and have high inertia, so it is important to identify which
legacy system that need to be changed and how to build upon and
incorporate the legacy system into a strategy for change. In other
words there is a need to cultivate the installed base.

Adapting the software to the local context Depending on how context sen-
sitive the ICT is there might be a need for making changes to the soft-
ware, both configuration changes and changes to the code. Therefore
it is important to identify the context free and context dependent tech-
nologies, and which part of a program that is context free and context
dependent.

Participation The importance of participation I have already described in
section 2.2.

Balance between localisation and internationalisation Here international-
isation refers to the process of isolating the culturally specific ele-
ments of the software. Localisation refers to the process of infus-
ing cultural or business specific elements into an already internation-
alised program. The balance between stability and flexibility need
to be cultivated. To cultivate this balance generic functionality and
changeable functionality must be identified.

The theoretical framework for technology translation is summed up in Fig-
ure 2.5.

2.3 Information Systems and developing countries 38

Legacy systems and

installed base

Technology translation
as the process of
cultivating sustainable
networks

Balance between
localization and
internationalization

Process of
customization

Participation

Figure 2.5: Factors influencing the technology translation process by
Nhampossa

Part 11

Method

Chapter 3

Methods

Now that I have framed my research within a predominantly social-science
perspective I will move on to what kind of methods that I have been using
in my research. My research takes place within a broader research net-
work, so the research methodology is largely established. The methods
I use is similar to what others in this research and development network
have used previously. There are some differences, however, because I am
not primarily researching the introduction of a health information system
in a country or region. I am primarily researching the use of FLOSS in the
context of HISP and Ethiopia. The cornerstone methodology of the HISP
network is action research, this will also be my cornerstone methodology.
This methodology will be applied within case studies.

In this chapter I will first explain the methodology I will rely on and then I
will move on to how I will apply this methodology in my research setting.
At the end of the chapter I will identify some limitations with my research
approach.

3.1 Research methodology

As mentioned in the introduction to this chapter, my cornerstone method-
ology will be action research, so I will give a quite lengthy description of
this methodology, and relate it to IS and FLOSS. Then I will give a short def-
inition of what a case study is, because case studies are my primary source
of firsthand information.

3.1 Research methodology 41

3.1.1 Action research

Modern Action Research (AR) has its heritage from social psychology related
research conducted in the 1940s. AR have since its inception developed into
a multifaceted research methodology. I am going to use the definition made
by Greenwood and Levin (1998) as a basis:

AR is social research carried out by a team encompassing a pro-
fessional action researcher and members of an organisation or
community seeking to improve their situation. AR promotes
broad participation in the research process and supports action
leading to a more just or satisfying situation for the stakehold-
ers.

Unlike conventional social science research that try to avoid any interven-
tion in the research setting, AR demands intervention. AR do not primarily
seeks to create general theories and to prove them true or false, AR shifts
the focus away from general theories in favor of local relevance. AR is
grounded in practical action aimed at solving real life problems while care-
fully informing theory. To inform theory AR involves a process of deliber-
ate and systematic reflection, and generally require some sort of evidence
to be presented to support conclusions. AR is inquiry that is done by or
with the members of an organisation or community, never is research done
to or on them (Herr and Anderson 2005).

AR s, as previously mentioned, a multifaceted methodology which is prac-
tised in a number of different ways. According to Greenwood and Levin (1998)
there are, however, three basic commitments that must be present for a pro-
cess to be called AR; research, participation and action. I will use the reminder

of this section to investigate this three commitments.

A powerful motivating commitment in AR is to change an organisation or
community into a more empowered, democratic and liberated state. The
focus on change is characteristic of AR, actions are made to change the or-
ganisation and community in a way that the stakeholders have agreed on.
AR focuses on action to create change in a social system, this is highly polit-
ical so an AR practitioner have to deal with politics. Herr and Anderson (2005)
frames the political considerations in AR within, among others, micro- and
macro-politics. Micro-politics is the politicising that takes place in the local
context of an organisation or community.

Micro-politics includes the behind-the-scenes negotiations over
material resources, vested interests, and ideological commit-
ments. More often, micro-political struggles are over such things

3.1 Research methodology 42

as professional jealousy, power differences in the organizational
hierarchy, the allocation of space and other resources, gender
and racial politics, and so forth. ...[Micro-politics] is as much
about what doesn’t get said as it is about what does.

(Herr and Anderson 2005, p.65)

Problems in the local context are often related to broader social forces and
problems. It is therefor important to identify macro-political factors influ-
encing the context where the AR is conducted. The motivation to initiate
AR research often comes from broader social and political issues. HISP was
for instance initiated as part of a broader political agenda aimed at promot-
ing equity after the end of the apartheid regime in South Africa.

In AR the stakeholders in a research setting and the researcher will, usually,
all be participating. How much stakeholders will participate will vary. In
some AR research the stakeholders will be co-researchers, they will partic-
ipate in the whole research cycle from identifying problems to reflectively
identify learning. Many forms of AR, Participatory Action Research (PAR)
among them, strongly emphasises this. It is important that the researcher
and the stakeholders participate on level turf and develop a relationship
based on mutual trust. By involving the stakeholders in identifying learn-
ing from an AR study, the creation of knowledge is made more democratic,
and it is more likely that this learning would be used to inform new actions
by stakeholders.

As mentioned in connection with PD in section 2.2 effective participation
can be a challenge to instigate, this challenges are relevant for participation
in AR too. In many settings it is not feasible to form a close working team
of researchers and the stakeholders. It might only be feasible to involve
stakeholders in some of the phases of the research, like in action planning
and action taking, but not in identifying learning. Neither is it necessary to
form a formal team, participation by stakeholders can be achieved in less
formal ways. Some level of participation do have to be present, however,
even if it is limited to the researcher participating in the problem domain,
be it an organisation or community.

The relationship the researcher have with the organisation or community
under study is something Herr and Anderson (2005) brings attention to.
They use a scale they call the continuum of positionality. This scale goes from
being an insider to the research setting to being an outsider. The degree
of participation is highest at the middle of the scale. On the far left of the
scale the researcher is an insider to the research setting, and the focus is on
the research’s own practice in relation with the research setting. Two other

3.1 Research methodology 43

form of insider studies are when an insider collaborates with other insider
and when insider(s) collaborates with outsider(s). In insider studies the
research is initiated by insiders.

At the middle of the continuum of positionality, where the degree of partic-
ipation is highest, are the insider-outsider teams where the outsiders and
insiders work together on level turf and have mutual trust. This is close to
an ideal form of PAR, but it can take years to develop this kind of relation-
ship, so it is generally not feasible within the constraint of a master thesis.
More feasible is it for outsiders to collaborate with insiders, but where the
researcher is clearly seen as an outsider. On the far right of the scale are
the research where outsider(s) studies insiders. This is the form of AR that
is closest to conventional social science research, but the researcher engage
more closely with the study’s participants.

The insider-outsider positionality is one of many ways to think about posi-
tionality.

Positionality occurs not only in terms of inside/outside, but
also in terms of one’s position in the organizational or social hi-
erarchy, and one’s position of power vis-a-vis other stakehold-
ers inside and outside the setting.

(Herr and Anderson 2005, p.41)

AR is partly based on the belief that action and participation brings un-
derstanding. By introducing changes into a social process and observe the
effect, knowledge about the local context can be deduced. AR do not rely
on any specific methods for capturing data during the research. The re-
searcher, perhaps in collaboration with the stakeholders, can choose whichever
methods, qualitative or quantitative, found to be appropriate in the re-
search setting. No matter which methods that eventually get chosen it is
necessary to pay close attention to the quality of the data gathered, and be
able to assure the correctness of interpretations made from the data. The
researcher have to be able to demonstrate that the interpretations are more
likely than alternative interpretations.

In complex and changing social settings the degree of control needed to
get reliable data by conventional research is often unattainable. Even if
the problem domain is broken down into sub-problems that can be investi-
gated under controlled condition, the researcher risk that the sub-problem
will become irrelevant in the changing social setting. AR is often portrayed
as a cyclical process like the one in Figure 3.2. AR attain rigor and flexibility
by going through research cycles. The methods and research question can
be refined in response to realities in the research setting.

3.1 Research methodology 44

Most conventional research methods gain their rigour by con-
trol, standardisation, objectivity, and the use of numerical and
statistical procedures. This sacrifices flexibility during a given
experiment — if you change the procedure in mid-stream you
don’t know what you are doing to the odds that your results
occurred by chance.

In action research, standardisation defeats the purpose. The
virtue of action research is its responsiveness. It is what allows
you to turn unpromising beginnings into effective endings. It is
what allows you to improve both action and research outcomes
through a process of iteration. As in many numerical proce-
dures, repeated cycles allow you to converge on an appropriate
conclusion.

(Dick 1993)

A common notion in the social sciences to attain quality in data and inter-
pretations is through the notion of triangulation. Simply speaking this is
about looking at a problem from multiple perspectives. By using multiple
information sources and multiple methods the quality of data will most
likely be better. It is also necessary for the researcher to address his or hers
own biases and how this can affect the research. The researcher have to be
self-reflexive.

Goals of Action Research Quality/Validity Criteria
1) The generation of new knowledge Dialogic and process validity
2) The achievement of action-oriented outcomes Outcome validity
3) The education of both researcher and participant Catalytic validity
4) Results that are relevant to the local setting Democratic validity

5) A sound and appropriate research methodology Process validity

Table 3.1: Anderson and Herr’s Goals of Action Research and Validity Cri-
teria

In Table 3.1 Herr and Anderson (2005) have proposed five validity criteria
for AR and linked them to the goals of AR. What constitute evidence and
validity in AR are still disputed, but they offer this criteria as tentative cri-
teria. I will shortly describe this criteria here.

Process validity refers to how the research is conducted. Important here is
the cyclic and ongoing problematisation of the practices under study;,
the appropriateness of the methods used and the quality of the rela-
tionships built during the study. To have a good basis for the asser-
tions made during the study, the notion of triangulation is important.

3.1 Research methodology 45

Dialogic validity. The research data, methods and interpretations should
be subject to peer review. The reviewer of the research can be stake-
holders in the research setting, colleagues or friends familiar with the
research setting, or fellow action researchers. It is important that the
reviewer are critical in reviewing the research.

Outcome validity is the extent to which action occur, which leads to a res-
olution of the problem that lead to the study. Action researchers have
a double burden in that they have to focus on both action and re-
search. The research must be of high quality as the same time as the
action researcher have to move participants towards a successful ac-
tion outcome.

Catalytic validity is the degree in which the researchers and stakeholders
have moved towards a better understanding of the research setting,
understanding which have the potential to transform the reality of
the research setting. As with PD the concept of mutual learning is
important, both the researchers and the stakeholders learn from each
other and from reflecting on the problem domain.

Democratic validity is the extent to which research is done in collabora-
tion with all stakeholders in a research situation. If the study is not
done collaboratively the researcher must take multiple perspectives
and interests into account. Is AR used to improve the situation of
some stakeholders at the expense of other stakeholders? The degree
to which the research is relevant to the local context is also important
to democratic validity.

AR is rooted in the local context and focus on what is relevant locally. The
question is then how lessons learned in a local setting can be apply to other
settings. This is the question on how generalisable research findings in AR
are. General theories have to apply in every local setting, so AR could be
used to test general theories. This is not the motivation to use AR, since AR
focuses on change and flexibility and not on challenging general theories.

Greenwood and Levin (1998) change the question about whether research
results from AR is generalisable to a question about transferability of AR
research results. This places the responsibility of justification on the ones
who seek to apply the research result. This looks somewhat similar to the
notion of technology transfer in section 2.3.2. Perhaps we should talk about
knowledge translation as well as technology translation?

We argue that AR-developed knowledge can be valuable in other
contexts other than those where it is developed, but we reject

3.1 Research methodology 46

the notion that the transferability of knowledge from one lo-
cation to another is achieved by abstract generalizations about
that knowledge. Transferring knowledge from one context to
another relies on understanding the contextual factors in the
situation where the inquiry took place, judging the new context
where the knowledge is supposed to be applied, and making a
critical assessment of whether the two contexts have sufficient
process in common to make it worthwhile to link them.

(Greenwood and Levin 1998, p.79)

Action

—
—

‘ (External dem:md) ‘ | Internal Conviction |

~
~
~

‘ Personal Understanding ‘ (Voluntarism)

~
-
~

A
‘ (Formalistic Generalisation) ‘ | Naturalistic Generalisation |

-7 \ L
(Formal Theory) (Codified Data) ‘ (Direct Experience) ‘ ‘ Vicarious Experience

Figure 3.1: Robert Stake’s Evolutionary View of Change

Herr and Anderson (2005) finds Robert Stake’s notion of naturalistic gener-
alisation a compelling way to think about how AR is taken up by other
practitioners and researchers. Figure 3.1 is a model of Stake’s view of
change. Change is based on action and action is taken either because of
external demand or internal convictions. Coercive external demand is of-
ten successfully resisted by practitioners, most lasting change takes place
through internal conviction. Conviction is again based on personal under-
standing and voluntarism. Voluntarism are personal feelings, values and
faith. Formalistic generalisation are the propositional knowledge common
in academia. Naturalistic generalisation are generalisations made from ex-
perience. This experiences are either direct or vicarious, that is “second-
hand” experiences. Narratives are one way to convey vicarious experience.

3.1 Research methodology 47

Action research in IS

Toward the end of the 1990s AR began to grow in popularity in IS research
circles. AR is rooted in action and research, and IS is an applied field which
should focus on research relevant for ICT practitioners and users. This
makes AR a good fit for research in IS.

Baskerville (1999) list some specific forms of AR that they deem to be valid
for research in IS. This list is given in Table 3.2 along with a reference to
relevant literature explaining that form of AR. The references are given by
Rose (2000). In addition to this list it should be mentioned that the Scandi-
navian approaches described in section 2.2 follow an AR approach. In the
Scandinavian projects mentioned theory building was done based on the
projects conducted.

Forms of Action Research Reference
Canonical Action Research (Baskerville 1993)

IS Prototyping (Kyng 1991)

Soft Systems Methodology (Checkland and Holwell 1997)
Action Science (Reponen 1992)

Participant Observation (Jepsen et al 1989)

Action Learning (Naur 1983)

Multiview (Avison and Wood-Harper 1990)
ETHICS (Mumford 1983)

Clinical Field Work (Hammer and Champey 1993)
Process Consultation (Coad and Yourdon 1991)

Table 3.2: Forms of IS Action Research

AR is indeed similar to organisational consulting and ICT consulting.
Baskerville (1999) points out the need to distinguish between AR and con-
sulting. AR is different from consulting in its commitment to research and
the research community. A consultant is expected to get things done, and
to suggest solutions based on experience. An AR researchers have to con-
sciously collect data, analyse and reflect, and based on this the action re-
searcher have to write papers founded within a theoretical framework. AR
usually gives more focus to collaboration, while a consultant is usually
hired to get a job done or to give an outsider’s unbiased view of the or-
ganisation.

AR is as previously mentioned frequently portrayed as a cyclic process.
The most prevalent model of this cyclic process is given in Figure 3.2

(Baskerville 1999). The client-system infrastructure in which the five phased
cycle takes place, refers to the specifications and agreements that the AR

3.1 Research methodology 48

/ \'
Spech_‘ying Action
Learning Planning

\ . Action
Evaluating Taking

.

Client-System
Infrastructure

Figure 3.2: The Action Research Cycle

research is governed by. This can be an agreement with a client organisa-
tion or the rules governing participation and action in more open ended
settings, like a FLOSS project.

Action research in the field of FLOSS

As a basis for his essay The Cathedral and the Bazaar (Raymond 2001) Eric
Raymond conducted action research. He did not give it that name, but
that is what he non the less did. He was handed over the fetchmail (at the
time called popclient) project. Previously he had been exposed to Linux
development and decided to test the lesson he had learned from Linux in
the fetchmail project. Based on the experience he made from managing this
project and from cooperating with the contributors, he wrote his essay.

I deem FLOSS projects to be fertile ground for conducting action research.
Many, but not all, FLOSS project are very open to contributions. An action
researcher can take on many roles in an FLOSS project. If the action re-
searcher is a member of the project’s core he has the position of an insider,
possibly collaborating with people more or less affiliated with the project.

3.2 My research approach 49

The action researcher can also be an outsider seeking to contribute to the
project. Eric Raymond had the position of an insider cooperating with more
or less outsiders. The core of the project was basically only Raymond him-
self.

Doing AR in FLOSS is similar in many ways to doing AR in IS. AR in IS
frequently happens within the confines of one or more organisations, while
in FLOSS the participation and cooperation between stakeholders and re-
searchers will most likely be more virtual. The client-system infrastructure
will then consist more of rules for contributing and channels for coopera-
tion, than it will consist of contracts and agreements.

3.1.2 Case Study

A case study, which is an in-dept exploration of one situation, is a common
qualitative method used in the social sciences.

... the distinctive need for case studies arises out of the desire
to understand complex social phenomena. In brief, the case
study method allows investigators to retain holistic and mean-
ingful characteristics of real-life events — such as individual life
cycles, organizational and managerial processes, neighborhood
change, international relations, and the maturing of industries.

(Robert K. Yin 2003)

Case studies are often exploratory in nature and is a good fit for stud-
ies of little known problem domains. Case studies have been criticised
for being a poor basis for generalisations, especially formalistic generali-
sations. Case studies are good for naturalistic generalisations, however.
By basing assumptions on a number of case studies and by doing longi-
tudinal case studies, stronger and stronger evidence for assumptions can
be given. When the problem domain is better understood other kind of
research methods like surveys and experiments can be useful.

3.2 My research approach

When I started to work on this thesis I did not have any clear understand-
ing of neither FLOSS nor HISP. I fact, I had only limited knowledge about

3.2 My research approach 50

action research and IS theory. The beauty of action research is that the cycli-
cal nature allows you to start out with a “fuzzy” research question and a
limited understanding of the problem domain. During the advancement
of my research I could constantly refine my questions and methods, and
thereby give better answers.

My motivation for this thesis was to increase my understanding of FLOSS
and developing countries, and how FLOSS can benefit developing coun-
tries. To do this I have read extensively about FLOSS, HISP, developing
countries and Ethiopia. Most importantly, however, I have participated in
the development of a prototype HIS in Tigray and the development of the
next major version of DHIS.

First I will give a short description of the two cases I have participated in
and state my position and biases relating to this cases. Then I will give
an outline of the concrete methods I have been using during my research.
I have framed my research within structuration theory so I will give an
description of how I will use this as a framework for my research. Last
I have to specify what I understands to be the limitations in how I have
conducted my research.

3.2.1 Working in the Tigray HISP team

This case study was conducted from July until the end of October 2004.
The case study took place in Ethiopia. In Ethiopia I worked together with a
team consisting of me and three others. The three others where Ethiopian
nationals, as a Norwegian national I was the only foreigner on the team. Of
the members in our team, one was a PhD student and the other three of us
were master students. The research setting was in the primary health care
system of Tigray. Ethiopia is a very ethnically diverse country, so all of us
on the team was more or less foreign to the region of Tigray. Most likely I
was more foreign than the others in our team, I do not speak Amharic and
I am a white man from a developed country.

Our position in the relationship with the Tigray health bureau and the two
districts we worked in was clearly an outsider team collaborating with in-
siders. The collaboration took shape through the forming of a team to de-
cide on which data elements should be included in DHIS, and on which
reports the system should be able to produce. During the training ses-
sions we got constructive suggestions on how to improve the prototype
we made. An important part of our purpose in Tigray was to develop an
evolutionary prototype based on DHIS for the primary health system in
Tigray. Our main purpose was to help health workers and management to

3.2 My research approach 51

collect more reliable and useful data. A purpose the stakeholders naturally
shared, at least in principle. We did not have time to develop a close rela-
tionship with the stakeholders, we spent in the vicinity of four months on
this case, only two of them were spent in Tigray.

In the team I was an insider, but because I was the only one in the team not
being an Ethiopian national I was in an other sense an outsider too. All on
the team spoke adequate English, so language for internal communication
was not a significant problem, except for some boring dinner conversations
conducted in Amharic. I don’t speak Amharic so all conversations con-
ducted in Ambharic are invariably boring. Language was more of a problem
for my relations with the stakeholders, information will invariably get lost
when a discussion is translated or retold after the discussion is finished.

Our case study in Tigray was only one of several AR case studies conducted
in Ethiopia. Ethiopia is a node in the HISP network and there was activity
in five regions when I was there, with different teams in each region. I will
explain more about the HISP network in chapter 6.

3.2.2 Participating in the development of DHIS 2

This case study have been conducted part time from the start of 2005 until
the start of 2006. I do not regard my participation in this project as finished
yet, but because I had to start writing my master thesis I stopped to be
active in this project from early 2006 and on. Hopefully I will be able to
participate more when I am finished. This project is more in line with how
FLOSS projects of some size are driven.

For reasons given in chapter 10 it was decided to do a total reimplemen-
tation of DHIS. The early planning for this huge undertaking had already
started some time before I signed up to write my master thesis as part of
the HISP network. As I am a computer scientist who likes to program I
found it appealing to work on this reimplementation. After coming back
from Ethiopia I therefore started to participate in this project. In the first
semester of 2005 I participated in this project through a graduate course,
after that time I still spent some time coding but did not actively partici-
pate in the virtual community of the project.

This case study is more of an insider or practitioner study. During the
course of the case study I contributed somewhat to other projects, in this
setting I was more of an outsider. However, the perspective in this case
study is mostly that of a practitioner. My purpose for doing this case study
was to learn more about FLOSS through action and participation. I have

3.2 My research approach 52

to state that I was sympathetic to FLOSS from the outset of my research.
To hand out code for free (as in freedom) use I do regard as a sympathetic
thing to do. I had also previously been exposed to FLOSS software, like
Linux, which I found fun, and sometime frustrating, to work with. This
frustrations forced me to learn more about the inner working of a com-
puter, which is a good thing for a computer scientist to learn.

3.2.3 Methods for data collection

In AR it is best to be flexible in the choice of methods used for data col-
lection, question that demands an answer constantly appear when going
through the research cycle. Some of this question are best addressed with
the use of qualitative data, others can be better addressed with quantita-
tive data. Most of the data collected are of the qualitative sort, but for the
investigation of FLOSS in Ethiopia and for the investigation of the DHIS 2
project, I have collected some limited quantitative data. To collect quanti-
tative data is a time consuming process, luckily I can use quantitative data
others have collected by using existing statistics.

Observation, participation and training

The role of an action researcher is not that of an objective observer, but
an action researcher still observes. Observations, and simply talking to
stakeholders in the day to day work of training and making the prototype,
or as I did in the DHIS 2 case, sending e-mails, is an important source of
information.

In the Tigray case, the negotiations we had with the regional health bureau
to set up a client-system infrastructure for our research was an important
source of information. In the meetings we had with different authority
persons in the bureau I took some scrappy notes as time and translation
allowed. By combining this notes with my memory and the memory of
other team members, I could write it up in my diary. The meetings could
have been recorded, but the stakeholders did not approve of it.

We conducted training sessions at the bureau and in the two health dis-
tricts. The training session at the bureau lasted over one week, in the dis-
trict we had a two day training session at each site. I participated in the
training session at the bureau and in one of the districts. Through this ses-
sions I got valuable feedback. The decisions on how to conduct this training
sessions was done in a partly participative manner, but the unit leader had
a bigger say than the computer clerks.

3.2 My research approach 53

In the DHIS 2 case, most of the communication were done virtually which
means that the communication is more traceable. I have saved the e-mail
I have sent to the different projects I have interacted with. E-mails sent to
e-mail list are stored in e-mail archives available thought the public Inter-
net. Some information are made available through the DHIS 2 Wiki. I also
logged conversations I had through instant messaging.

Literature, electronic archives and statistics

My primary source of secondhand information, was information accessible
through the Internet. For information relating to FLOSS this is a natural
place to look. For books that were not electronically accessible I sometimes
used the university library, at the University of Oslo.

For information relating to the Tigray case I used articles I found searching
the Internet, international news media and statistics available from differ-
ent organisation working with Ethiopia or developing countries in general.
In Table 3.3 have made a list of the most important sources of information.

Information Source URL

Wikipedia http://en.wikipedia.org/

UN http://www.un.org/

UNDP http://www.undp.org/

UNMEE http://www.unmeeonline.org/

UNICEF http://www.unicef.org/

The World Bank http://www.worldbank.org/

CIA World Fact Book https://www.cia.gov/cia/publications/factbook/
allAfrica http://allafrica.com/

The Reporter http://www.ethiopianreporter.com/

National Election Board of http://www.electionsethiopia.org/

Ethiopia

Ethiopian News Agency http://www.ena.gov.et/
Ethiopian Telecom http://www.telecom.net.et/

BBC http://news.bbc.co.uk/africa
Guardian Unlimited http://technology.guardian.co.uk/

Table 3.3: Internet Information Sources for the Tigray case

http://en.wikipedia.org/
http://www.un.org/
http://www.undp.org/
http://www.unmeeonline.org/
http://www.unicef.org/
http://www.worldbank.org/
https://www.cia.gov/cia/publications/factbook/
http://allafrica.com/
http://www.ethiopianreporter.com/
http://www.electionsethiopia.org/
http://www.ena.gov.et/
http://www.telecom.net.et/
http://news.bbc.co.uk/africa
http://technology.guardian.co.uk/

3.2 My research approach 54

For secondhand information relating to FLOSS I have used sources too
numerous to list here. Important references are in the regular reference
section. It is common in FLOSS projects to have publicly available e-mail
archives, discussion forums, Wikis, issue tracking systems and other tech-
nologies used to facilitate cooperation. Most of the information I have
used I got from regular books and articles about FLOSS. If I had time to
go through some more AR research cycles I could have investigated more
archived information.

Narrative - Recording a diary

During my stay in Ethiopia I regularly kept a diary. In the chaotic AR re-
search setting of Tigray this was my most important method to record my
experiences and to remember names and conversations. To get the most
reliable information this should be done at the end of every day, or sooner
if you need to write up some scarp notes while it is still fresh in memory.
If the day was rather eventless there is limited need to write an entry in
the diary, but it is a good habit to have. I have to admit, however, that as
our case study progressed and more demands was laid on me, my diary
suffered. In the beginning I wrote frequent diary entries, but the frequency
became less as the case study progressed.

Automated collection of quantitative data

On all the computers that makes up the Internet there is stored massive
amount of data. A lot of this data are of the qualitative sort, but it is also
possible to collect quantitative data for analysis. Unlike surveys and ques-
tionnaires this do not need to involve lengthy processes of interviewing to
gather the data. The data is already “out there” in a form accessible to a
computer program. By simply using a program this data can be collected.
If there is no program available fit to collect the needed data, it is possi-
ble to make one which do. Two papers I have read (Lancasshire 2001) and
(Mockus et al. 2002) did this. Both made Perl script to collect and process
data. I have done this in my research on three occasions. On one occasion
I made a python script to search for Ethiopian web servers on Google and
on the second occasion I made a simple Perl script to process Linux credit
files. On the third occasion I made a Perl script to gather information from
the Subversion repository used in the DHIS 2 development.

To gather information about the topology of the Internet and information
about the hosts connected to the Internet there exist network analysis tools.

3.2 My research approach 55

I'have used two such tools t r acer out e and nmap. t r acer out e is a pro-
gram useful for discovering the topology of the Internet. I used this pro-
gram to find the international Internet connection of Ethiopia. nmap is a
network analysis tool. This tool should be used with caution, it can poten-
tially be ethically questionable because it is a tool that can be used to gather
information that can be used to crack into a private networks. This tools is
useful for discovering hosts, and to get information about them. I used this
tool to find web servers running within the Ethiopian IP range.

Why I didn’t do formal interviews

When I first came to Ethiopia I had a plan to do some formal interviews, of
the semi-structured or the structured kind. This is a common method used
to collect qualitative data. I soon discovered that I did not have sufficient
knowledge of FLOSS to ask useful questions. I was a foreigner in Ethiopia
so I had no idea of who I could ask. Ideally I should have prepared more
before I went to Ethiopia, but there was a need for people in Ethiopia quite
soon after I had volunteered to go to Ethiopia. Part of the cyclic nature of
AR is the constant refinement of research questions and methods based on
experience, so if I could go to Ethiopia now I would be able to ask useful
questions. I made one semi-structured interview with one of the managers
of the DHIS 2 project, Knut Staring. This was done mostly to verify my
interpretations of the DHIS 2 project.

3.24 How I will use ST

I have placed my research within the theoretical framework of ST (de-
scribed in section 2.1.2). Here [will describe how I will use this framework
on a practical level.

Social systems in Gidden’s definition are social practices replicated through
time and space. This leads me into thinking that history is important to un-
derstand why the social systems are the way they are today. For this reason
I will give relative (to the length of this thesis) lengthy historical accounts
for especially FLOSS, but also for Ethiopia. By observing the social systems
over an extended period of time it is possible get a better understanding
of the social systems, and a better understanding of how and why they
change.

Even if ST focuses on the replication and change of social systems over time
and space I think it can be useful to give a snapshot image of the current sit-
uation in a social system. The model I have developed to give this snapshot

3.2 My research approach 56

view clearly resembles Gidden’s analytical model of the duality of structure
(see Figure 2.1). In my model I seek to identify important modalities in the
three dimensions contributing to the structures; signification, domination
and legitimisation. In Figure 2.1 the focus is on the modalities and the im-
ages | have used are only meant to illustrate the model. In actual use I will
not necessarily use images to visualise the modalities, more likely I will use
textual descriptions. I will only use this model in my analysis of the broad
social system of FLOSS. I did not get a sufficiently deep understanding of
the primary health system in Tigray to model it in this way.

Structure Signification - Domination ~— Legitimisation

Modality

Interaction ~ ~

~ Communication _Power Sanction]
(Making sense of interaction) (Making a difference) (Approved human interaction

Figure 3.3: An analytical model loosely resembling the duality of structure

3.2.5 Limitations in my research approach

Doing formalistic generalisations based AR must be done with extreme
care, AR do not naturally lend itself to formalistic generalisations. For nat-
uralistic generalisations the responsibility for justifications is not mine, but
the researcher using my research have to do the justification. In forming
this thesis I have relied on other AR studies, which I hopefully have pro-
vided sufficient justification for. To make more formal generalisations the
number of research cycles are important. In my study I have only went
through one full circle in each case study. I have constantly refined my
understanding of the research domain and I have made use of different

3.2 My research approach 57

methods along the way, but this has only been within the phases of the cir-
cle in Figure 3.2. The reason that I have only went through one circle can
be attributed to the time constrains of a master thesis.

I'should also have subjugated my research and interpretations to more peer
review. Unfortunately I do not have an extensive network of friends with
knowledge about FLOSS, Ethiopia and developing countries. I have also
been hard pressed for time so I have not prioritised searching for people
willing to read through my thesis (which is not a small task). The evalua-
tion and specifying learning phases have not been done in a participative
manner.

Even if I had predominantly good relations with my team members and the
staff at the research sites in Tigray, I was a foreigner. The people I worked
with spoke English, but some of the meetings and a lot of the more informal
conversations were conducted in Amharic. Because of language problems
and because I didn’t have deep knowledge about the culture of Ethiopia
and Tigray, I might have missed some important clues.

To facilitate sustainability of our effort it is best with many research sites.
This is more carefully explained in section 6.2. We only had access to two
pilot sites in addition to the regional health bureau. The management of the
bureau gave us access to only two districts. There were also several factors
limiting the value of participation. There was a high rate of staff turnover,
the bureau head was changed between our first and second visit. The staff
at the bureau was also hard pressed for time in our first visit, an annual
report on the health in Tigray had to be finished. Fractionating between
the different departments in the bureau also put its limits on cooperation.

Because I didn’t record the meetings we had with the bureau I might have
missed some important information. I should also have been more rigorous
in maintaining my diary and faster at writing up my scrap notes. Consider-
ing my limited experience and the chaotic conditions of the research setting
I managed to keep a quite good record of my research.

My participation in the development of DHIS 2 too soon became a solo
effort. I, together with an other master student, started on developing a
plug-in framework for DHIS 2. The other master student participated while
the graduate course we took lasted. This effort became too difficult for the
state of the technology at this time, and because we were not seasoned
Java programmer and had limited time. We had a too grand vision for our
plug-in framework. After the end of the graduate course I was on my own,
and I was swamped into the coding of the framework. This limited my
participation in the project as a whole. My effort became isolated from the
rest of the project. I should have been more chatty about what I was doing.

Part 111

Background

Chapter 4

Short History of Open Source

The term open source was agreed upon at a meeting in 1998 by a number
of key open source advocates. The values, development model, licenses
and culture the term seeks to contain, has it’s roots from several decades
before 1998. The idea of distributing the source code of a program, with
permission to change and redistribute it, is an idea that have it’s root in the
early history of computing.

In the technology oriented communities that cherished the idea of being
able to change and improve software the term hacker arose. Unlike what
many connects with this term, this people were not seeking to break into
computer systems and making viruses. The term arose before there was
anything called the Internet. The hacker culture was a driving force behind
creating what to day is commonly called open source.

By presenting this narrative of the open source history I want to give some
basic insight about the people, technologies and occurrences that have formed
what is commonly called open source to day. While the practise of sharing
code has been present from the birth of computing, the philosophies, the-
ories and values forming the source sharing communities of to day, have
appeared and been refined over the years. I will use the terms free soft-
ware and open source interchangeably to mean the same thing, unless oth-
erwise specified. My most important source of information for this chapter

is (Weber 2004).

4.1 The early start of programming 60

4.1 The early start of programming

The history of the electronic computer is short in the space of time. The first
electronic Turing complete computers were made during and after world
war two. Turing completeness is a term based on the universal Turing ma-
chine, which is a simplified model of a programmable computer. Of the
earliest computers the German Z3 from 1941, the British EDSAC from 1949
and the American ENIAC from 1945 can be mentioned. The dawn of mod-
ern electronic programmable computing came in the time my parents were
born.

In the early days of computing there were no meaningful distinction be-
tween what we to day call software and hardware, or between users and
programmers. There was only the computer and the people that operated
it. The first computers were operated through front panel switches, and
permanent storage was often cardboard cards with holes representing 1
and no hole representing 0 (or possibly vise versa). The operator of the
computer had to instruct the computer using machine language, this is now
called a first generation language.

It is very cumbersome and error-prone to instruct the computer though
machine language. Therefore the need for an abstraction was soon realised.
The first level of abstraction was to give each computer instruction a textual
name and using hexadecimal, octal or decimal numbers in place of digital
numbers. The program that translate from the textual representation of
instructions to machine language is called an assembler.

Machi ne | anguage on a x86 processor
10110000 01100001
00000100 00001111
10100010 00001000

Intel assenbler for x86 processor

SECTI ON . data
Xx: dd 0

SECTI ON . t ext
nmov al, 061h
add al, OOFh
mov [x], al

Different computers have different instruction sets and therefore programs
written in machine language and assembler were tied tightly to the hard-
ware. The distinction between hardware and software became more clear
as 3rd generation languages started to appearer in the 1950th. FORTRAN,
LISP and COBOL are example of languages first developed in the fifties.

4.2 The three strains of hackerdom 61

FORTRAN code
| x=97+15

The fifties were dominated by large mainframe computers. This computers
were based on vacuum tube technology, and were large as an office and
expensive as a small office building. One example is the IBM 705 which
was a commercial computer launched in 1954. This computer was sold at
an average price of $1.6 million.

In those days there were little meaning in selling programs. You had a pro-
gram on, punch card, paper strips or magnetic tape that you feed into the
computer. The computer industry had it’s income from hardware. There
was, however, a need for programs to run on this computers, because pro-
grams were seen as add-ons to the hardware it made sense for computer
manufacturers to collaborate. Therefore a collaborative organisation called
SHARE was started in the US This organisation practised source code shar-
ing. This was not unusual, from the very start of programming loose asso-
ciations of programmers from different companies shared code.

In the sixties cheaper computers based on transistors came on the marked,
most notably by Digital Equipment Corporation (DEC). Connected to DEC
was a user group called DEC User Group (DECUS) founded in 1961. DE-
CUS, like SHARE, practised source sharing which was common at the time.
Engineers from different companies would meet to exchange experience
and source code.

The early history of open source is closely connected to what Eric Raymond
call the hacker culture (Raymond 2001), which we will see in the following
section. This was the group that continued source sharing after software
became commercially interesting.

4.2 The three strains of hackerdom

Eric Raymond dates the start of the hacker culture as we know it to day
to 1961, the year Massachusetts Institute of Technology (MIT) acquires it’s first
PDP-1. The PDP-X strain of computers were made by DEC and sold at con-
siderably lower price than the IBM mainframes. The lower price on com-
puter hardware allowed university departments and corporate research
units to buy computers.

Computer power was still expensive and giving each programmer his own
computer was not an option. There was a need to divide computer power

4.2 The three strains of hackerdom 62

between users. One early solution to this was to execute programs in batch.
A programmer would give a paper strip to a computer administrator who
in turn assembled different paper strips into a magnetic tape. This tape
would be given to the Central Processing Unit (CPU), and programs would
execute in sequence. This did not utilised the processor time very effi-
ciently. The processor would be idle while the program was read into mem-
ory from the tape, or when the result was written to tape or printer.

The solution to utilise the processor better was to overlap different jobs in
time. While one job was waiting for the tape, an other job could be exe-
cuted. If you could change between different jobs for one user there was
no reason that you could not do this for many users. From multitasking
in batch processing the idea of Time Sharing-System came. Time Sharing-
Systems are important because it allowed each programmer to have access
to his own terminal. To send source code though a compiler in a batch
processing system, waiting for an hour only to find that there was a com-
pilation error must be frustrating.

The access to a terminal gave the programmer freedom to do more experi-
menting and playing with the computer. This spirit of playfulness and ex-
perimenting with the possibilities offered by the computer is a basic value
among hackers. According to Eric Raymond the term “hacker” originates
from the computer culture at MIT. Other places where the hacker culture
flourished in the early years were Standford University’s Artificial Intelligence
Laboratory (SAIL) and Carnegie-Mellon University (CMU).

This earliest strain of the hacker culture grew on time-sharing systems, like
Incompatible Time-sharing System (ITS) and TOPS-10 combined with MACRO-
10, and DEC hardware, most importantly PDP-10 machines. ITS was a
time-sharing system developed at MIT, TOPS-10 and MACRO-10 were the
Operating System (OS) and assembler made by DEC. The predecessor for
the Internet, ARPAnet was primary a network of PDP-10 machines. Many
prominent free software advocates, like Richard Stallman founder of Free
Software Foundation, have their background from this strain of the hacker
culture.

The hacker culture also found inroads into a business research laboratory
called PARC in the XEROX company. The modern day LAN based on Eth-
ernet have its origin here. The Graphical User Interface (GUI), with windows,
menues and icons, was also invented here.

A second strain of the hacker culture that would later replace the PDP-10
strain of the culture started to emerge from 1969 and onwards. In 1969
Ken Thompson made the first version of the class of operating systems
called Unix. A colleague named Dennis Ritchie invented the programming

4.2 The three strains of hackerdom 63

language called C. Both were working for Bell Telephone Laboratories (BTL).

Unix was reimplemented in C during the seventies, which made Unix highly
portable. Earlier system like ITS was made in assembly, which made ITS
obsolete when the PDP-10 line of computers were discontinued. Because of
juridical reason AT&T who owned BTL sold source licenses at nominal fee.
The Unix strain of the hacker culture was spread out to universities across
the US and Europe.

The third strain of the hacker culture was a part of the emerging computer
revolution which was going to give computing to the masses. The first per-
sonal computers (PC) were marketed in 1975. Apple were founded in 1977.
At the same time Commodore Corporation entered the computer industry.
Commodore later acquired and developed the Amiga strain of comput-
ers. Commodore sold cheap machines and sold their computers mostly i
Europe. The Commodore 64 and Amiga introduced me to the computer,
though I mostly used it to play games, so I have a slight emotional tie to
this machines.

When you turned on a Commodore 64 you went straight into a BASIC
interpreter. BASIC became the language of the first computer hobbyists.
While the Unix and PDP-10 strains of the hacker culture was based in uni-
versities, colleges and research institutions, the PC strain was the one that
made it into the sleeping room of high school boys. The only early connec-
tion with FLOSS I can see from this strain is the practise of sharing BASIC
source, and computer magazines often listed BASIC code which made your
computer do interesting things. Shareware, where you give out the binary
of a program and ask people to pay, became more common. Shareware is
also referred to as nagware or donationware because they often display a
message each time you start the program asking you to pay for the soft-
ware. Shareware, however, is not open source, as no source is distributed.

Even if you could not get the source for a program the practise of shar-
ing, or pirating, binaries was common among hobbyists. The hobbyists
were more interested in experimenting and having fun with their comput-
ers than being efficient. The hobbyists naturally shared code and binaries
because they were interested in making their computer do new and inter-
esting things without reinventing the wheel. It was against this crowd that
Bill Gates, one of the founders of Microsoft, sent his “open letter to hobby-
ists” accusing them of stealing software.

4.3 Multics, Unix and AT&T 64

4.3 Multics, Unix and AT&T

I treat the development of Unix in a separate section because of two rea-
sons. The Unix type of operation systems is the heritage to the most im-
portant FLOSS operating systems, the different BSD variants of Unix and
Linux. Second the practice of source sharing have been common in the
Unix community thought it’s history. There are important lessons to learn
from this history.

In 1964 researchers at MIT along with colleagues at General Electrics (GE)
and Bell Labs, began a joint project to build a second generation time-
sharing system. It was designed for high availability, seeking to provide
a computing utility on continuous basis, like the telephone or electricity
systems. In this way you could plug a dump terminal into a socket in the
wall and you would be connected to a Multics driven mainframe.

The Multics project was too ambitious for the state of technology at the
time. It didn’t help that the tree collaborators had different goals for the
system and that there was an awkward structure of decision making. The
project decided to write Multics in a not yet implemented language, PL/I.
PL/1 proved difficult to implement. The project didn’t deliver on time and
was under-performing when it did. Multics never became a commercial
success, but it contained many new ideas in computer science. Among this
ideas were dynamic linking and a single level of storage (discarding the
clear distinction between process memory and files).

Bell Labs withdrew form the project in 1969. Several researchers at Bell
Labs felt, however, that they had learned important lessons from the Mul-
tics project. Lessons that could be used to build a new and simpler oper-
ating system. In the summer of 1969 Ken Thompson, a researcher at Bell
Labs, stayed at home while his wife took their new born baby to California
to visit the grandparents. Thompson had access to a quite old and not very
powerful computer, a PDP-7. Using the four quiet weeks he had available
he allocated one week each to writing a kernel, a shell, an editor and an as-
sembler. The system Thompson had made he called UNICS, a intentional
play on Multics. Unics was later renamed Unix.

To build an operating system alone in just one month Thompson had to
put behind big system mentality, and build small neat tings. The doctrine
of smallness and simplicity is at the core of the Unix philosophy. Later the
important innovation of the pipe would help in modularising Unix. A pipe
is a mechanism for inter process communication (IPC) allowing, among other
things, the output of one program to be given to the input of an other pro-
gram. This made it easier to make small specialised programs. A program

4.3 Multics, Unix and AT&T 65

producing an unordered list of names could be piped into a program for
soring thereby producing an ordered list of name.

Command to produce an ordered list of host names in the ifi.uio.no domain
host -1 ifi.uio.no | sort

There was increasing pressure to document Unix as it turned out that Unix
would become more than an experimental toy. Dennis Richie, an other im-
portant Unix developer at Bell Labs, and Thompson turned the necessity to
document into a virtue, because clean and well designed programs are easy
to document, while documenting an ugly piece of code makes it clear just
how ugly it is. The first edition of the programmers manual established the
Unix tradition of listing each subprogram with an “owner”. The “owner”
was responsible for writing and maintaining a subprogram.

Until 1973 Unix had only been deployed inside AT&T. This situation changed
drastically after Thompson and Richie presented a paper on Unix to several
hundred developers gathered at the ACM Symposium on Operating Sys-
tems in October 1973. After the paper was published in 1974 a flood of
requests for copies flooded in at Bell Labs.

For a few hundred dollars license fee AT&T supplied the source code of
Unix. The interest in Unix might have seemed like a business opportunity
to AT&T but for a consent decree made in 1956. In 1956 AT&T entered a
consent decree on an antitrust allegation stating that AT&T could not en-
gage in manufacturing or sale outside of telephone, telegraph and “com-
mon carrier communications” services. The AT&T lawyers interpreted this
to essentially mean “no business other than phones and telegrams”. The
AT&T wanted a clean statement that they were not seeking software as a
business. Because a decree provision required Bell Labs to license patients
at nominal fee, Unix was licensed at nominal fee. The early Unix licenses
were minimal. The software came “as is” without royalties to AT&T, but
also without support and bug fixes. This encouraged sharing of support
and bug fixes among Unix users.

In 1973 the important decision of rewriting Unix in the new high level
programming language C was made. The initial version of C was devel-
oped by Dennis Richie between 1969 and 1973. This was important be-
cause this made Unix much more portable. Most earlier operating systems
were made in assembler, and had to be rewritten for every computer archi-
tecture. The portability of Unix have made it possible to port it to many
different computer architectures.

Unix made inroads into many university computer science departments.
Because the source code was available Unix was treated as a research and

4.3 Multics, Unix and AT&T 66

learning tool. This created a good environment for experimentation in soft-
ware development, creating many useful applications which were freely
shared. In 1976 Unix to Unix Copy Program (UUCP) was made. UUCP be-

came a “poor man’s” networking for Unix. You could exchange files point-
to-point over ordinary telephone lines.

UC Berkley became an important node in the Unix community in the sev-
enties. From the time of the first Unix installation done at Berkley there
was a tone of cooperation between Bell Labs and Berkley. Thompson took
a year sabbatical from Bell Labs to work at Berkley from the autumn of
1975. A number of popular Unix tools were developed at Berkley, most
notably a pascal compiler and the ex line editor. In 1977 this tools were put
together by Bill Joy into a package called the Berkley Software Distribution
(BSD).

The first releases of BSD up until 2.9BSD for the PDP-11 architecture and
3BSD for the VAX architecture, were not complete operating systems, but
rater a package of Unix tools. After that time the BSD releases included the
kernel, C library and utilities making it a full operating system. A lot of
code in the kernel, C library and utilities included source which required
a AT&T license to use. This was no problem because you could get this li-
cense at nominal fee. This changed in 1983 when AT&T was forced to break
up the company because of legal reasons. Now AT&T was not restricted
from entering the software industry and the price of the Unix source license
exploded to cost in the $100,000 range in 1988. Before the mood shift in, and
breakup of AT&T, AT&T had happily shared source code in exchange for
contribution and bug fixes.

In 1989 Berkley released a package without any AT&T code containing the
increasingly popular TCP/IP stack for BSD and a number of other tools.
This package where called Networking Release 1 (Net/1). Net/1 became im-
mensely popular and inspired Keith Bostic to bring up the idea of reimple-
menting as much of the utilities contaminated with AT&T code as possible.
This was a huge undertaking so Bostic consciously designed a public, vol-
untary, Internet based development effort to write the C library and the
hundreds of utilities needed by BSD. Kirk McKusick and Michael Karels
had agreed with Bostic that if he wrote the utilities, they would work on
the kernel, partly believing that Bostic would never be able to do it. This
proved wrong so they started to work on the kernel. This complicated job
was more or less finished by spring 1991, only missing 6 files still contain-
ing AT&T code. This files were deemed to hard to rewrite, so this almost
complete operating system was released under the name of Networking Re-
lease 2 (Net/2).

William (Bill) Jolitz ported Net/2 to the Intel x86 architecture and wrote the

4.4 The rise of the Internet 67

six remaining files betting that x86 would evolve quicker than competing
architectures. This release, dubbed 386/BSD, was released with a license
allowing free redistribution and modification as long as the credit file was
kept intact (a BSD style license). People started to contribute to 386/BSD
about the same time as the graduate student Linus Torvalds was trying to
find a Unix-style operating system for his x86 PC. Having no World Wide
Web (WWW) he did not find 386/BSD, so he started on making his own
kernel which became Linux (see section 4.6). 386/BSD and 4.4BSD-light
have evolved into FreeBSD, NetBSD and OpenBSD (see figure 4.1). The
proprietary versions of Unix went along a different path, with multiple
incompatible competing versions, which I will not cover here.

4.4 The rise of the Internet

ARPAnet is usually coined to be the predecessor of the Internet, and in-
deed most of the technological heritage are from this network. ARPAnet in
its first incarnation, was developed during the sixties based on ideas about
packet switched networks. In packed switched networks transmission is
divided into discrete packages individually sent over shared transmission
lines. The ARPAnet project was founded by US Defence Advanced Research
Project Agency (DARPA). During the seventies the network was expanded
to include American universities, defence contractors and military insti-
tutions. In 1975 there were 57 packet switching nodes connected to this
network, with peripheral nodes in Hawaii, London and Norway. In 1981
this had increased to 213 nodes. Up to four hosts could be connected to a
packet switching node.

During the seventies the ARPAnet was dominated by PDP-10 computers
and used a protocol stack called Network Control Program (NCP). ARPAnet
was a Wide Area Network (WAN) of its own and was not an internetwork,
which to days Internet is. An internetwork is a network between networks.
Unix had point-to-point networking though UUCP. With UUCP, Unix users
could exchange mail point-to-point which lead to the creation of servers
where you could send and receive messages like on a bulletin board. This
where called Usenet. UUCP formed a network separate from ARPAnet. In
addition there were a chaotic number of different network technologies in
the US and Europe. Some examples where the X.25 based SERCnet(1974),
and CERnet(1976) with its own protocols. X.25 is an ITU-T (The standards
body of International Telecommunication Union) standard protocol suite. X.25
was designed to provide a packet-switched WAN on the analog telephone
system. This protocol suite is obsolete, but X.25 based networks still remain
some of the only available reliable links to the Internet in many portions of

4.5 Free Software Foundation 68

the third world.

The most important reason that ARPAnet is seen as the predecessor of to
days Internet is the TCP/IP protocol suite. TCP/IP was designed so that it
could be used over many different kind of networks as long as the interme-
diate routers and end stations spoke IP. IP packets could therefore travel
over may different kind of physical networks and rely on existing proto-
cols for lower layer communication. ARPAnet switched over to TCP/IP in
1983. 4.2BSD with fully integrated TCP/IP networking where released in
1983, increasing both TCP/IP’s and Unix’s popularity. During the eighties
and early nineties more and more X.25 based networks started to route IP
traffic. Internet Service Providers (ISP) providing dial-up connection to IP
networks replaced the networks of UUCP connected hosts. This connec-
tion of many different networks by means of IP have formed the Internet
of to day.

The Open Systems Interconnection (OSI-stack) was an effort to standardise
networking that was started in 1982 by the International Organization for
Standardization (ISO). The OSI protocol stack was considered by many to
be too complicated and was almost impossible to implement. The OSI pro-
tocol stack specified every layer in the protocol stack demanding existing
protocols to be replaced. The OSI stack was eclipsed by the simpler and
more pragmatic TCP/IP protocol stack. A lot of the functionality in the
OSI protocol stack have later been implemented by other means using the
TCP/IP stack.

4.5 Free Software Foundation

The MIT Artificial Intelligence Lab was in the 1960s and 1970s a major cen-
ter for development of software. At this time when the hacker culture at the
lab flourished, a undergraduate student named Richard Stallman started
to work in 1970. He got a part time job at the lab, while at the same time
he was studying mathematics at Harvard. Stallman did excellent achieve-
ments in his mathematics studies, and as a spare time activity he sought out
computer labs asking for manuals and executing trial programs he made.
This activity lead him to MIT.

The culture at MIT was stark contrast to the culture at Harvard. At Har-
vard access to computer terminals was given according to academic rank,
and undergraduate students like Stallman often had to wait until midnight
to get access to a terminal. At the same time terminals were sitting idle,
locked inside professors offices. At the MIT Al lab they had a “first come,

4.5 Free Software Foundation 69

first served” policy. This policy owed much to a tightly knit group calling
themselves “hackers”. The hackers spoke openly about changing the world
through software, and viewed with disdain any obstacle that prevented
them from fulfilling this noble goal. Chief among these obstacles were
poor software, academic bureaucracy, and selfish behavior. This group of
people even broke into professors offices to “liberate” locket in terminals
(Williams 2002). This group of people, belonging to the ITS/PDP-10 strain
of hackerdom, would have a profound impact on Stallman.

During the first decade Stallman was working at the Al lab the hacker cul-
ture had a strong standing. It was perfectly normal to share the source code
of your work. As Stallman describes it:

We did not call our software “free software” because that term
did not exist yet, but that what it was. Whenever people from
another university or a company wanted to port and use a pro-
gram, we gladly let them. If you saw someone using an unfa-
miliar and interesting program, you could always ask to see the
source code, so that you could read it, change it, or cannibalize
parts of it to make a new program.

Nearing the 80s things started to change as software increasingly became
commercially interesting. Companies wanting to profit on software started
to require programmers to sign None Disclosure Agreements (NDA). This
prevented the programmer from sharing the code with others. Stallman
experienced this when the Al lab got a new printer from Xerox. Because
the printer suffered from paper jams Stallman wanted to change the code
driving the printer. He wanted to make the printer send a message to ev-
erybody in the printing queue that a paper jam had occurred, so that it
could be fixed. When he asked a professor at Carnegie Mellon, who previ-
ously had been working on the code for the Xerox printer, if he could get
the source code Stallman where refused. This infuriated Stallman.

During the first years of the 80s a lot of things would happen to the hacker
culture at the Al lab, so much that Stallman felt his “home”, the hacker
culture he strongly identified with, was threatened. A lot of hackers at
the lab were hired away to a start-up company named Symbolics. This
company’s software was based on free software, but they would not share
their improvements of the software. DEC also discontinued it's PDP-10
line of computers. ITS where written in PDP-10 assembler, therefore ITS
became obsolete. Because so many of the Al lab’s hackers were hired away,
porting ITS was not an option.

All the controversy around the Al lab hackers being hired away, lead Stall-
man to believe his commune was gone. Not being able to get the source

4.5 Free Software Foundation 70

code for the Xerox printer Stallman had considered only a practical nui-
sance, but now he stared to believe that this was a moral issue. The right
to share and modify a program was a question of freedom and a question
of being a good neighbor. This he would later express in the following four
freedoms:

1. The freedom to run the program, for any purpose (freedom 0).

2. The freedom to study how the program works, and adapt it to your
needs (freedom 1). Access to the source code is a precondition for
this.

3. The freedom to redistribute copies so you can help your neighbor
(freedom 2).

4. The freedom to improve the program, and release your improve-
ments to the public, so that the whole community benefits (freedom
3). Access to the source code is a precondition for this.

It is worth pointing out that free do not mean “no price”, this freedoms do
not prevent anybody from selling copies.

In January 1984 he left his job at MIT to start the GNU project. GNU is a
recursive acronym meaning GNU’s Not Unix. He reasoned that in order to
promote free software a free operating system had to be made. As he puts
it (Stallman 1999):

With an operating system, you can do many things; without
one, you cannot run the computer at all. With a free operating
system, we could again have a community of cooperating hack-
ers — and invite anyone to join. And anyone would be able to
use a computer without starting out by conspiring to deprive
his or her friends.

An operating system consist of many parts, a kernel, system libraries, a
shell and tools. The operating system also needed to be made in a higher
level language to make it portable.

After searching for some time after a free C compiler without much success
he started on GNU Emacs. Emacs was an editor originally developed by
Stallman and many other hackers at the Al lab. Emacs had forked in many
different version, not all where free. Stallman initially started to borrow
code from GOSMACS, a Lisp based Emacs. Lisp is a language originally

4.5 Free Software Foundation 71

developed at the Al Lab to assist in Al research, and became a favored lan-
guage at the lab. The author of GOSMACS had sold the copyright to a
company named UniPress. When UniPress threatened to enforce the copy-
right, Stallman decided to reverse engineer GOSMACS. In early 1985 GNU
Emacs was beginning to become usable. Now the GNU project had some
code to show, and request for GNU Emacs started to come inn. Stallman
and a few colleagues started Free Software Foundation (FSF) to take care
of the business side of the GNU Project shortly after the release of GNU
Emacs. GNU Emacs is still very much alive to day, in fact I write my thesis
using this editor.

The name Emacs is short for “editing macros”. Emacs originates from
TECO, TECO is short for “Text Editor and COrrector”. TECO was cum-
bersome editor to use. You edited a document by typing series of editing
instructions, making TECO a cross between an editor and a programming
language. In the late seventies Stallman revised a feature in TECO called
Control-R which switched TECO into a keystroke-by-keystroke mode (when
you typed a Ga Gwould be inserted into the buffer. Stallman revision made
TECO execute a number of instructions stored in a file, a macro, when a two
key combination was typed. The user could now make two key combina-
tions execute some useful instructions of he’s own choosing. This feature
inspired an explosion of innovation. After a couple of years the number
of macros had become a problem, sitting down at an other user’s termi-
nal it could take an hour to understand what the other user’s macros did.
Guy Steele took it upon himself to solve this problem. Stallman and Steele
started an effort of standardisation. This collection of macros was named
Emacs.

The Copyright Act made in the U.S. in 1976 extended copyright to software
programs. Companies and individuals could now copyright the “expres-
sion” of a software program but not the “actual processes or methods em-
bodied in the program.” Stallman initially viewed this development with
alarm, but proponents of copyright argued that (Williams 2002):

Using copyright as a flexible form of license, an author could
give away certain rights in exchange for certain forms of behav-
ior on the part of the user. For example, an author could give
away the right to suppress unauthorized copies just so long as
the end user agreed not to create a commercial offshoot.

This argument softened Stallman’s resistance to copyright. The copyright
law could be seen as just another system waiting to be hacked. This even-
tually lead to the creation of the GNU General Public License (GPL). This li-

cense is designed to uphold the four freedoms previously mentioned. The

4.6 Minix, Linux and Hurd 72

license permit you to run, distribute, modify and distribute the modifica-
tion as long as the modified version is also licensed under GPL. Seeing a
sticker with the message “Copyleft (L), All Rights Reversed” he decided
to call this scheme copyleft using a backward C as a symbol. The GPL is
considered Stallman’s most important hack.

A lot of widely used and recognised software have been developed by the
GNU project. The most important are the GNU Compiler Collection (GCC),
formerly named GNU C Compiler, GNU Emacs, GNU Debugger (GDB) and a
lot of other Unix tools. A lot of effort by GNU developers went into main-
taining and implementing new features into this successful tools. By the
early 90s GNU still lacked the most important piece of an operating sys-
tem, the kernel. Stallman had been looking for a existing kernel to modify.
The decision landed on using the Mach micro kernel. The kernel, named
Hurd, should be implemented at a set of kernel server for the Mach micro
kernel. This work would not commence until 1990, but this would take a
long time to do, giving an opening to another kernel which we will see in
the next section. In fact to day in 2006 there is still not a stable release of
Hurd, but it exist.

4.6 Minix, Linux and Hurd

In January 1991 a graduate student at University of Helsinki had bought
himself a PC with a 80386 processor. This came with MS-DOS installed
as most PC’s at that time. This student, Linus Torvalds, preferred the Unix
type of operating systems that he learned about at the university. His apart-
ment was a good distance from the university and student terminals were
not always available, so he wanted to run a unix-like OS on his PC. Search-
ing for it he found Minix.

Minix is a small Unix clone made by Andrew S. Tanenbaum for teaching
purposes. Tanenbaum is a professor at Vrije University in Amsterdam. He
made Minix because AT&T had decided to forbid the teaching of Unix in-
ternals. The source code for Minix was published as an appendix to first
edition of Operating Systems: Design and Implementation in 1987.

At this time the development of the Hurd kernel had started, but no one
knew when a runnable version of Hurd would be available. Torvalds in-
stalled Minix on his PC and in April 1991 he started to experiment in build-
ing an operating system of his own. In the end of August he posted onto
the minix newsgroup and stated that: “I'm doing a (free) operating sys-
tem (just a hobby, won't be big and professional like gnu) for 386(486) AT

4.6 Minix, Linux and Hurd 73

clones.”. In the beginning of October he posted onto the minx newsgroup
again, this time inviting people to experiment with and improve Linux. In
this post he also explains his reason for making a new kernel:

I can (well, alnost) hear you asking yourselves "why?".
Hurd will be out in a year (or two, or next nonth, who
knows), and |’ve already got mnix. This is a program

for hackers by a hacker. 1’'ve enjoyed doing it, and
sonmebody might enjoy looking at it and even nodifying
it for their own needs. It is still small enough to

under stand, use and nodify, and |’ m | ooking forward
to any coments you night have.

It is worth to note that, as mentioned in section 4.3, work to make a free
Unix clone and porting it to the 386 processor was already being done at
Berkley. Jolitz was working on 386/BSD about the same time as Torvalds
was working on Linux. Torvalds would later say that had he known about
the availability of 386/BSD he would probably have worked with it rather
than starting on his own kernel.

For different reasons Linux attracted a larger following than 386/BSD and
its derivatives FreeBSD, NetBSD and later OpenBSD. In 1992 AT&T’s Unix
System Laboratories (USL) filed suite, first against a company named Berkley
Software Design Incorporated (BSDI) which sold a proprietary offspring of
NET/2, BSD/386. Later that year USL refiled the suite against both BSDI
and UC Berkley. This created uncertainty around the code from which all
the BSD off-springs were based. In 1993 FreeBSD and NetBSD were started
based on 386/BSD. In 1995 NetBSD where forked creating OpenBSD as an
offshoot.

In the early nineties monolithic kernels, where different components of the
kernel like memory management and file systems are all compiled into a
single binary, were out of fashion among operating system theorists. One
of this theorists was Tanenbaum who made Minix with a micro kernel. In a
micro kernel sub components, like memory management, are isolated from
a small kernel core. Because discussions about Linux were taking place in
a newsgroup devoted to Minix, Tanenbaum posted a news challenging the
choice of a monolithic kernel i Linux. This spun of a lengthy debate still
available on WWW to day. As Torvalds explained in the previously men-
tioned e-mail he designed Linux to be a program for hackers by a hacker.
Torvalds figured that a monolithic kernel would be easier for hackers to
tweak. The choice of a monolithic kernel was also the quickest route to a
working kernel. Monolithic kernels is simpler to make in the first versions,
but have a tendency to grow into a big, hard to debug, mess.

4.6 Minix, Linux and Hurd 74

Unlike GNU’s Herd kernel, which was being made with a micro kernel,
Linux was available. Simple as Linux still was, it gave promise that it could
be made into something great. Torvalds was welcoming to contributions
and good at responding to interested people, making contributers feel their
efforts were being appreciated and not just thrown away:.

By the end of 1991 Torvalds no longer portrayed Linux as hobby for him-
self. Many who wanted the Linux source code did not have access to the
Internet, and therefore could not get it from the FTP site it were distributed.
For these people to get Linux sources someone had to copy it to disk and
send it. The original homegrown license for Linux did not permit mak-
ing money on Linux, this included distribution fees. Sending floppy disks
cost money, so many developers asked Torvalds to permit a small copy-
ing fee. From the 0.12 version released in January 1992 Linux has been
licensed under GPL. This license allow a distribution fee, and guarantees
that Linux will stay free. In an interview Torvalds said, concerning this
decision: “Making Linux GPL'd was definitely the best thing I ever did”.

The phase of Linux development grew rapidly from early 1992 and on-
wards. In early 1992 Orest Zborowski took it on himself to port X windows,
the windowing system most common in Unix systems, to Linux. X used a
lot of system libraries not implemented in Linux, so the work was more to
make Linux fit X than the other way around. The work of porting X ex-
panded the functionality of the Linux kernel, and it exposed many deep
bugs.

The next big step was to make a TCP/IP stack for Linux. Because the BSD
code was still being disputed in court, the Linux community started from
scratch. First Ross Biro made some crude code, which was taken over by
Fred van Kempen. van Kempen had a visions to “throw away the old and
write it all from the bottom up for a perfect grant vision”.

This effort was taking a long time and van Kempen kept his efforts close
to his chest. People in the Linux community were getting impatient, van
Kempen failed to make some interim code that worked in 80% of the cases.
Torvalds sanctioned a parallel coding effort by Alan Cox. Cox had a vision
of “make it work first, then make it better”. Cox took van Kempen's early
code and made it into something useful.

Torvalds chose to include Cox’s code into the official version. People started
to send networking code to Cox making Cox the semiofficial “networking
guy”. Torvalds legitimised this by sending networking patches to Cox first
before he looked at it. This was the first sign of the “lieutenant model”
used for decision making in Linux. This is a hierarchy where code is sent
to lieutenants, but where Torvalds have the final say on what is included.

4.6 Minix, Linux and Hurd 75

The first stable version of Linux, version 1.0, was released in March 1994.
In 1992 Tanenbaum had criticised Linux for being too tightly connected
to the 386 processor, making it difficult to port Linux to other hardware
platforms. In 1994 a Unix programmer at DEC, John Hall, met Torvalds
at a DEC user meeting. Hall was impressed with Linux. Hall later con-
vinced Torvalds to work on porting Linux to DEC’s 64bit Alpha processor,
with help from DEC. The Linux kernel was re-engineered to make it more
portable to different platforms. The most resent Linux kernel release (2.6)
support, at least, 17 general purpose architectures. In addition Linux have
been ported to a number of embedded systems. It is interesting to see that
Linux was criticised by Tanenbaum for being to tied to the x86 architecture
and how many architectures Linux supports now.

Many people thinks that Linux is an entire operating system, but it is not.
Linuxis a kernel. A kernelis a relative small part of what people commonly
think an operating system is, like command interpreter, visual display and
tools. The kernel is, however, the most important peace of an operating
system. A kernel hides all the tricky hardware details of a computer, from
programs running on it. Because a lot of the core utilities commonly used
in Linux systems to day were made by GNU, FSF claims that Linux should
be called GNU/Linux.

To get Linux running on a machine, and getting all the programs you want,
was difficult. This gave rise to what is to day called Linux distributions.
Distributions conveniently packages a lot of useful software together, and
makes it relatively easy to get a Linux based system running. Two identifi-
able strains of Linux distributions were visible from the early start.

The first strain is based on a community model like Linux is. Example of
these are Slackware and Debian, both started in 1993. Debian is the most
used distribution, according to the linux counter. The name Debian comes
from the name of it’s founder Ian Murdock and his wife Debra. To stir up
some interest for his plans to make a Linux distribution, Murdock posted
his intentions on Usenet’s conp. 0s. | i nux and on different Internet sites.
This caught Stallman’s attention leading to FSF supporting Debian for one
year. The Debian project is known, apart for being a good distribution, for
the Debian social contract. This contract is the basis of The Open Source
Definition which we will look into later.

The other strain of Linux distributions, the commercial distributions, were
pioneered by a company calling itself Yggdrasil. Yggdrasil began to sell it’s
distribution on CD-ROM bundled with non-free software in binary form.
In the eyes of FSF this was a sin. Yggdrasil wanted to include the non-free
software because they found it useful. Other distributions made with the
commercial marked in mind are the European SuSE which started in 1994,

4.7 The rise of Open Source into the main stream 76

the American RedHat which started in 1993 and the Japanese Turbolinux
which started in 1992. SuSE was bought by Novell in 2004, a company that
specialize in network operating systems. RedHat now have two distribu-
tions. One based on a community model named Fedora, and the other for
the business marked named Red Hat Enterprise Linux.

The phase of Linux development grew rapidly during the nineties, and is
still strong to day in 2006. The credit file, in the Linux kernel sources, where
important contributers are mentioned, have increased from 80 contributer
in version 1.0 to 472 in version 2.6.15. The code base for the kernel has also
increased manifold, from 176,250 lines of code in version 1.0 to 5,929,913
lines of code in version 2.6.

Up until version 2.2 Linux was a pure monolithic kernel. You had to com-
pile all the features you wanted to include in the kernel and all the device
drivers you wanted to have, into one binary. If you added some hardware
to your system, you had to compile a new kernel with the device driver of
the new hardware included. In version 2.2 Loadable Kernel Modules (LKM)
was introduced. With LKM, device drivers and extended functionality can
be loaded into the kernel during run-time. This makes it easier to extent
and test a part of the kernel. It is sort of a middle ground between a mono-
lithic kernel and a micro kernel.

4.7 The rise of Open Source into the main stream

As we have seen it was normal to share code in the infancy of computing
, but very few people used computers. Computers were an arcane subject.
In the late seventies computers started to come into more widespread use,
and it became possible to earn money on software. This created conflict
between sharing code and keeping it secret, so you could sell it. This is
what Stallman experienced.

Bill Gate’s open letter to hobbyist, written at the time, said that the hobby
marked lacked good software, and went on to state “Who can afford to do
professional work nothing?”. As the use of computers grew, so did pro-
prietary software. The “hobby” marked which Microsoft was founded on,
would eventually surpass the mainframe and mini computer marked. Pro-
prietary software companies were successful in distributing it’s software to
the new masses that entered computing during the eighties and nineties.

Stallman had taken the discussion about software into the realm of ethics.
He preached that proprietary software was morally wrong. Free software
is a question of freedom, you should have freedom to make changes to a

4.7 The rise of Open Source into the main stream 77

program and give it to your neighbours. FSF’s perceived hostility to intel-
lectual property and slightly communist sounding ideology did not sit well
with the business world, especially in the US where communism had been
seen as the most dangerous threat by the government until the late eight-
ies. The meaning of the word “free” have two meaning in English; free as
in “libre” and free as in “gratis”. How can you earn money on something
that is “gratis”?

In the decade since launching the GNU project, Stallman had built a rep-
utation as an excellent programmer. He had also developed a reputation
for being non-compromising both in terms of software design and people
management. lan Murdock, founder of Debian, and Eric Raymond had dis-
tanced themselves from FSF because of Stallman’s “micro-management”
style. Eric Raymond had up until 1992 contributed significantly to GNU
Emacs, but distanced himself for the same reason. In 1996 FSF experienced
a full-scale staff defection, blamed in large parts on Stallman.

Brian Youmans, a current FSF staffer hired by Salus in the wake
of the resignations, recalls the scene: "At one point, Peter [Salus]
was the only staff member working in the office."

(Williams 2002)

Hackers like Linus Torvalds and others in the Linux crowd did not share
this moral view on software. Torvalds do not find proprietary software
morally wrong. He started Linux development for the fun of it, not to fight
proprietary software. In an interview Torvalds said:

I'm generally a very pragmatic person: that which works, works.
When it comes to software, I _much_ prefer free software, be-
cause I have very seldom seen a program that has worked well
enough for my needs, and having sources available can be a
life-saver.

(Yamagata 1997)

There were growing dissent in the free software community towards FSF’s
strongly moral stance. There were a large contingent of developers within
the free software community having a more pragmatic view on software,
not only Linus Torvalds. The free BSD Unixes were released under a license
with minimal restriction, permitting proprietary derivatives from the code
base. This crowd believes in the freedom to build great software with min-
imal restrictions.

4.7 The rise of Open Source into the main stream 78

The previously mentioned Eric Raymond encountered Linux in late 1993
and what he saw came as a shook to him. He assumed that hacker amateurs
could not muster the resources to produce a multitasking operating system.
He involved himself in the kernel development, and pondered upon what
made Linux development work so well.

Brook’s Law predicts that as the number of programmers N rises, work
performed scales as IV, but complexity and vulnerability to bugs rises at
N2, So if a project is delayed it will only be more delayed if you add pro-
grammers. Raymond was determined to discover how the Linux commu-
nity had avoided the N? effect.

After three years of participation he developed a theory. He tested the the-
ory on the procmail project. Based on his experience with Linux and proc-
mail he wrote The Cathedral and the Bazaar. In 1997 he presented this essay
on a Linux congress in Germany and a Perl conference in USA, with stand-
ing ovation from the audience. The news about this essay spread like fire
on the net.

Netscape, a pioneering company in web technology, had been targeted
for destruction by Microsoft. Microsoft used it’s near monopoly of the
desktop by including Internet Explorer in it’s operating system offerings.
Netscape feared that if Internet Explorer achieved marked dominance, Mi-
crosoft would be able to bend the web protocols away from open standards
and into Microsoft’s own proprietary standards, which only Microsoft’s
servers could serve.

In January 1998 Netscape announced that it would release the source of the
Netscape browser. The content of The Cathedral and the Bazaar was a major
influence in this decision. It took several month after the announcement be-
fore the code was released. The code for the Netscape browser was a hard
to understand patchwork, with inadequate documentation, developed un-
der tight business deadlines. The code badly needed reorganisation, which
took several months.

Eric Raymond saw this as an demonstration case for the principles he laid
out in The Cathedral and the Bazaar. He hoped that if the source code release
was successful the hacker culture, and thereby free software, would raise
out of it’s ghetto and into the mainstream, if not he feared that it would
confirm business manager’s assumption that free software were not com-
mercially viable.

Raymond offered his help to Netscape in developing the license for the
software and working out a strategy. While he was meeting with Netscape
he also met a number of key people in the free software community, like Li-

4.7 The rise of Open Source into the main stream 79

nus Torvalds and Bruce Perens. During this meetings a strategy for getting
free software into the mainstream was made. In February 1998 Eric Ray-
mond and Bruce Perens founded the Open Source Initiative (OSI). Deciding
on using the term open source to avoid the “libre” vs “gratis” confusion as-
sociated with the term “free”, Raymond and his supporters set out on a
marketing campaign outlined in his book (Raymond 2001).

I March Tim O’Reilly, founder of a publishing company specialising in soft-
ware related books and an early supporter of Raymond’s initiative, gath-
ered a number of key developers living at the west-coast in the US. This
was set in place to get support for OSI. The invitation list included Tor-
valds, Larry Wall (creator of Perl), Eric Allman (creator of sendmail) and
Paul Vixie (creator of Berkley Interned Naming Daemon (BIND), the most
used DNS server.). This was later called The Free Software Summit. In this
meeting it was agreed upon to use the term open source with a 9 to 15
vote, according to O’Reilly (Williams 2002). Stallman was not invited to
this meeting which would create controversy later.

The OSI marketing campaign can be said to have been a success. It created
a lot of attention in the US media. Other companies began to announce
that it would involve themselves in open source. Oracle, a big database
vendor, said it would port it’s database to Linux. IBM involved themselves
in the Apache project. Apache is the web server most frequently used on
the net. IBM used Apache in it’s WebSphere product and contributed back
to Apache, even if the Apache License did not require it.

The open sourcing of Netscape did not become a success, but it spun of
the Mozilla Foundation. The Netscape source was still too hard to under-
stand and had to many interlocking dependencies. It was decided to build
a new layout engine for the browser from scratch. The layout engine turns
HTML into what is rendered in the browser. This engine was built using
a Component Object Model (COM) framework and given the name Gecko.
Gecko made the development of the web browser highly modular. The
Mozilla Foundation have produced the Firefox web browser and Thunder-
bird e-mail client, which is increasing in popularity. The open source initia-
tive gained so much momentum that the early failures of Netscape to open
source it’s browser did not matter.

Bruce Perens resigned from OSI after one year regretting that OSI had posi-
tioned itself in opposition to FSE. In a e-mail from February 1999 he wrote:

Most hackers know that Free Software and Open Source
are just two words for the sane thing. Unfortunately,
t hough, Open Source has de-enphasi zed the inportance
of the freedons involved in Free Software. |It's tine

4.7 The rise of Open Source into the main stream 80

for us to fix that. W nust make it clear to the world
that those freedons are still inportant, and that software
such as Linux would not be around without them

(Perens 1999)

Stallman considered briefly to adopt the term open source, but concluded
that: Open source, while helpful in communicating the technical advan-
tages of free software, also encouraged speakers to soft-pedal the issue of
software freedom.

The pragmatic view represented by OSI, emphasises the technical and effi-
ciency advantages and represents the Linux community as an example of
an efficient method. The moral view represented by FSF, emphasises free-
dom and the right to change and distribute software. This differences have
not been settled, so the term FLOSS have been invented to include both the
free software and the open source crowd. This is the term I will be using in
this paper.

4.7 The rise of Open Source into the main stream

81

1969

1871

072

1873

1974

1075

o778

e

19

1980

-—

o852

1983

1985

1085

1088

1987

1089

1040

legl

1092

1095

1995

loog

2000

004

005

21850
Sunos{.o UK System il
41cBSD
UNIX Syste m V
Unix Time-Sha ri/r; System 8
Sn0S3.2 4.38SD
4385DTatoe Unic Time-Staring System 9 UMLK Si=t=m
Minke 1.1
Unix Time-5Sha ring System 10
43850 Rena
BSD L:Jz Solaris 2
BSDR86031 38RO D0 UnixWare 1.0
38ERSD 0.1
NetBSD 0.8
FreeBSD 1O
Sur054.14 44BSDLit= 386850 LO
/Q;jm.o\
SABSDLES petRSDLL FreeBSD 20
7
211BSD Patch 335 f@am 20
OpenBSD2.3 MetBSD 13 FreeBSD 30
211BSD Patch 431
4 3BSD0uasijauslc UnixWare 7.1.4
OpenBSD3.8 NetBSD21 FreeBSD 60 Solarks 10 Minix 3.1.1

UNIX POP-7

}

Unix Time-Sharing System 1

}

Unix TimeSha ring System 2

}

Unix Time-Sha ring System 3

Unix Time-Sha ring System 4

e

Unix Time-5ha ring Sysbem 5 PWE/LINGE

|

Unix Time-5ha ring System &

].BSD/ \

Unix Time-Sha ring System 7

\

2BSD Unix 32V

LN

279B5D 3BSD

GHU

Linux 0.0.1

GNU & Linux

GNU & Linux 2.6.14

Figure 4.1: Evolution of Unix

Chapter 5

FLOSS - How does it work?

Many have marveled at how it is possible to make software as complex
as operating systems without handing out paychecks and having strong
management. How is it possible to motivate people to do hard and com-
plex work without paying them? And how it is possible to get, up to as
many as, hundreds of people to work efficiently together towards a com-
mon goal, without strong management? This are question I will explore in
this chapter.

To understand FLOSS some knowledge about the philosophise and val-
ues common among FLOSS participants and FLOSS leaders are necessary.
Then we will look into what motivates FLOSS developers and then on how
project in FLOSS are governed and we will look at the FLOSS license. When
the general introduction to FLOSS is finished I will present challenges and
constraints in the FLOSS development model. Last I will move on to give a
presentation of FLOSS in the context of developing countries.

5.1 Philosophy and values

People working with FLOSS are not a unified group. There are people of
a multitude of political, religious and moral views working with FLOSS.
An effort to give a short and specific explanation of FLOSS philosophies
and values necessarily has to be somewhat imprecise. One common factor
among all in the FLOSS community has to be the view that source sharing
is a good thing, for whatever reason. There are organisations who seeks
to represent the FLOSS community and some empirical research exploring
motivation among FLOSS participants have been done

5.1 Philosophy and values 83

The organisation FSF are seeking to represent and influence the FLOSS
community, and has a lot of expressed philosophies and values, with a
strong moral stance. OSI has less focus on moral philosophy and values
and emphasises the economic and engineering aspects of FLOSS.

Many important figures in the FLOSS community, like Linus Torvalds, Richard
Stallman and Eric Raymond, identify themselves, and are being identified
by others, as hackers. This show that the hacker term is important in un-
derstanding the FLOSS community. So in our quest to identify common
philosophy and values in the FLOSS community it is important to under-
stand the hacker ethics.

You don’t have to be a hacker to participate in FLOSS. To contribute code,
however, you have to like programming, or perhaps being paid to program.
The hacker community, judging by the Hacker Survey

(Lakhain, Wolf, and Bates 2002), is a core part of the FLOSS community. To
the statement “Hackers are a primary community with which I identify”
41.5% strongly agreed and 42% somewhat agreed. FLOSS has a strong his-
torical heritage from the hacker community, and the hacker community is
still dominating the FLOSS scene.

This is in the process of changing as FLOSS has become more main stream.
People are hired to work with FLOSS. 30% of the respondents to the Hacker
Survey gave “My contribution creates specific functionality in the code
needed for my work” as one of the three top reasons for contributing code
to a project. There are businesses experimenting with different business
models to profit from FLOSS. IBM HP, RedHat and MySQL AB are exam-
ple of companies participating in FLOSS.

I will in the following sections more closely describe the hacker ethic. Then
I will look into the more pragmatic and technical philosophies in the FLOSS
community. Last I will look into the moral philosophies represented by the
four freedoms promoted by FSF.

5.1.1 Hacker ethic

Unlike the public image of the stereotype hacker, a person identifying him-
self as a hacker is usually not trying to break into private networks. Even
if the persons doing this frequently call themselves hackers, and is called
hackers by the public, this is not the type of hackers I am going to describe
here. The type of hackers I am referring to is the type of hackers defined in
the Jargon File. According to the Jargon File, maintained by Eric Raymond ,
a hacker is (Raymond):

5.1 Philosophy and values 84

1. A person who enjoys exploring the details of programmable systems
and how to stretch their capabilities, as opposed to most users, who
prefer to learn only the minimum necessary.

2. One who programs enthusiastically (even obsessively) or who enjoys
programming rather than just theorizing about programming.

3. A person capable of appreciating hack value.
4. A person who is good at programming quickly.

5. An expert at a particular program, or one who frequently does work
using it or on it; as in "a Unix hacker". (Definitions 1 through 5 are
correlated, and people who fit them congregate.)

6. An expert or enthusiast of any kind. One might be an astronomy
hacker, for example.

7. One who enjoys the intellectual challenge of creatively overcoming
or circumventing limitations.

The interest in exploring programmable systems and the intellectual chal-
lenge of creatively overcoming limitation can lead to the “dark side” of
hackerdom. The “dark side” meaning breaking into computer systems to
make damage, and/or making viruses, worms and other nasty harmful
programs. A “dark side” hacker is called a cracker in the Jargon File.

The same Jargon File also define the ethics commonly adhered to by hack-
ers:

1. The belief that information-sharing is a powerful positive good, and
that it is an ethical duty of hackers to share their expertise by writing
open-source code and facilitating access to information and to com-
puting resources wherever possible.

2. The belief that system-cracking for fun and exploration is ethically
OK as long as the cracker commits no theft, vandalism, or breach of
confidentiality.

Information sharing is different from sharing of material good in the funda-
mental way that the one who give information do not loose the information
he gives. This is illustrated by this African saying:

Two little boys exchanges toys, both went away with one toy
each. Two wise men exchanged ideas, both went away with
two ideas each.

5.1 Philosophy and values 85

Through information sharing you get access to the work and ideas of nu-
merous others. By contributing just one idea, millions of others can benefit
from it without you loosing anything, more likely you earn respect from
it. This is a clear parallel to the academic community, where the open ex-
change of ideas is essential, but the hacker community has less obstacles to
participation. The hacker community is informal, while the structure in the
academic community is clearly more rigid, with positions and titles. The
second point in the hacker ethic, the one about system-cracking for fun, is
more disputed.

Hackers have a belief that there are a near to unlimited number of chal-
lenging and interesting problems to work on. There is a thrill in solving
intellectually challenging problems, though a thrill that require hard work.
If the problem is solved in a elegant and creative way it is even better.
Because there are so many interesting problems to work on no problem
should have to be solved twice. If a solution is kept secret, the problem
has to be solved again for others to benefit from it. Reinventing the wheel
should be avoided whenever possible.

The hacker culture is strongly meritocratic. You can not give your self the
honour of calling yourself a hacker, but based on your merit this title might
be awarded to you by other hackers. The measure of prestige in the hacker
culture is the code you produce, the software documentation you write, the
tutorial for a computer language you make, or other signs of good crafts-
manship in software related tasks you show. The culture do not judge ac-
cording to gender, race, title, but it do judge according to your ability to
contribute. Bragging about your abilities would usually not help to im-
prove your merit, let your work brag for you.

Within the hacker community there is disagreement to whether all infor-
mation/code should be free. The OSI camp emphasises that it is preferable
with free information because it gives better results. In a way you could say
that we benefit most from information when it is distributed freely, but you
can keep it to yourself if you want to. The FSF camp says that it is morally
wrong to deprive your neighbor of information. This views we will look
closer into in the following two sections.

5.1.2 Pragmatism

OS], Eric Raymond and Linus Torvalds represents the more pragmatically
inclined contingent of the FLOSS community. The emphasis is on the joy of
programming, and on how good the FLOSS model is to create good stable
software. FLOSS gives you the ability to look into other peoples code, so

5.1 Philosophy and values 86

you can learn from and improve it. FLOSS has so many sensible engineer-
ing advantages that it is not necessary to go into the realm of ethics. To
keep information to yourself is not morally wrong, but it would be much
more helpful if the information is allowed to be used and built upon freely.

The pragmatic reasons sounds better to the ears of a business manager. If
your business is in need of software, where the software itself is not meant
for sale, like an e-commerce application, you basically have three alterna-
tives. You can buy a proprietary solution from a vendor, you can build
your own or you can base it on FLOSS solutions. For businesses that do
not have it’s profit from software sale, the large majority, but depend on
software to run the business it makes sense to share the cost of developing
the necessary software through sponsoring a FLOSS project. Like the pre-
viously mentioned SHARE from the fifties shared code, because hardware
was seen as the main business.

A majority of software developers do not work on software meant for sales.
The majority of developers develop software because a company need it as
a service to support it’s revenue generating enterprise. To look at software
production though the spectacles of industrial production is misleading in
this cases. A developer is not a point in an assembly line, but is more like
a doctor asking where it hurts and working to remedy that. Having access
to a large tool-set of FLOSS applications makes this much easier and saves
the company money.

Many other pragmatic reasons can be given, but the point is that it is many
different reasons for the resent interest in FLOSS. For sure most of this in-
terest is based on pragmatic reasons, few of them particularly idealistic.
There are arguments for using FLOSS software and sponsoring FLOSS de-
velopment based entirely on economic considerations.

5.1.3 Moralism

Parts of the FLOSS movement represented by FSF have elevated the con-
cept of free sharing of information into the realm of ethics. The key ele-
ments in the ethics promoted by FSF is outlined in the four freedoms listed
in section 4.5. By keeping information to your self you are hoarding infor-
mation. Restricting access to information is to deprive others of the free-
dom to use and build upon this information.

The grand old man of FSE, Richard Stallman, in his article Why Software
Should Not Have Owners (Stallman 2002) presents key points in the ideology
behind free software. Copyright fitted well with the printing press because

5.2 Development practices 87

it restricted only the mass producers, but to restrict copying and editing of
digital information restricts the right of the individual user. Stallman argue
that the authors have no natural right over what they write, that is why
copyright are limited in time. The concept of copyright exists to give the
authors some economic gain from their work in order to promote develop-
ment. Before the computer, copyright only restricted mass producers, but
as distribution of information electronically is much simpler than distribut-
ing by paper copyright do not restrict only mass producers, but individual
users. FSF has made use of copyright in the previously mentioned copy-
left scheme. This scheme ensures that the software stays free by requiring
modified versions to stay under the same license.

The previously mentioned pragmatic advantages FLOSS gives are happy
consequences of freeing information, but it is fundamentally a moral ques-
tion. In the Hacker Survey 34,2% gave “Code should be open” as one of
the top three motivations for FLOSS participation. The majority of FLOSS
participants are participating because of pragmatic reasons, but still a sub-
stantial part are idealistically motivated. The FSF with it’s moral message
kept to the ideals of free software in the eighties and nineties at a time when
few believed that free sharing of source code would be anything more than
a small niche. Even if the pragmatic reasons for FLOSS are dominating, the
moral message is important for bringing the FLOSS concept to life.

5.2 Development practices

In his book The Cathedral and the Bazaar (Raymond 2001), Eric S. Raymond
divides between two different paradigms of software development; the
Cathedral and the Bazaar. The cathedral represents the hierarchical and or-
dered organization of the big software companies. The bazaar on the other
hand represents the many independent actors in the open source com-
munity. This comparison gives a good picture of the differences between
companies and the open source community, but is not all together true.
All companies is not necessarily strongly hierarchically organized, and the
Open Source community have many organizations that gives structure to
the development. I will in this section look closer at the Bazaar model, with
which I mean the distributed innovation done in open source projects.

To build usable software is a extraordinary complex process. It is hard to
predict the time and money required to build an application. The computer
software history is full of examples where project have blown the budged
and gone severely over schedule, and sometimes never finished. This com-
plexity exist for both proprietary developed software and software devel-

5.2 Development practices 88

oped by an open source project. This complexity however is handled in
different ways. In a business setting complexity is often handled through
distribution of labor. The scheduling of tasks is most often handled in a
top-down fashion by management. Because different part of an applica-
tion often have complex dependencies, it is exceedingly difficult to make
good decisions about how labor should be distributed. There is no ques-
tion about the need to distribute software development, the task of making
large computer software is too big for anybody to do alone. Unlike when
an architect is drawing a building it is not possible for a software architect,
or a group of software architects, to make a drawing, or plan, of the soft-
ware and hand it down to the workers and expect that the software will
become as he imagined. The field of software development is simply a to
complex and lucid a thing, to accurately pin down in general terms. The
bazaar and the cathedral are illustrations on how labor are distributed.

In an FLOSS setting division of labor is done in a quite different manner.
Production in a FLOSS project is based on voluntary labor. A company
hands out reward in form of payment and can threaten to fire an employee
if he does not fulfill the requirements laid on him. Because of this the com-
pany can make the employee perform a task that he finds boring. This is
not the case with voluntary labor. In an FLOSS setting you have the chance
to choose what you want to contribute. There exist a multitude of project
that you can choose to contribute to, and if you find a need in an area you
are interested in you can start your own project to fulfill that need.

This motive to participate in or start a project in a area you are interested in
is labeled with the phrase “to scratch a personal itch”. In this scenario the
developer is both the user of the software and the developer. Close com-
munication between users and developers is critical to the successful devel-
opment of software with non-trivial and/or uncertain requirements. When
the user and developer is merged into one, this communication is as perfect
as it can get. Participants in a FLOSS setting are user-programmers, with
varying degree of emphasis on user or programmer. There are a varying
degree of sophistication and involvement by the user-programmer. The dif-
ferent degrees can be exemplified by the following phrase: “All can make
suggestions, many can send bug reports, some can make patches and a few
can make major contribution.”

FLOSS developers being motivated by interest might lead you to think that
a lot of boring task will not be done. Among programmers the tasks of user
documentation and visual design is often not found interesting, but partic-
ipation in FLOSS is not limited to programmers. As an example I can men-
tion freecol http://www.freecol.org/. Freecol is an FLOSS implementation of
a computer game called Colonization. In this project a music composer, two

http://www.freecol.org/

5.3 Motivation 89

graphics designer and a writer is mentioned on the Credits page. FLOSS
gives people with different interest a chance to do what they like, and at
the same time give them a chance to share it with the world. It seems that
the way of organizing complex task through individuals choosing tasksis a
viable alternative. It is true, however, that proprietary software usually are
more pleasing to the eye. After all like many other commercial products,
proprietary software are in large part dependent on the wrapping to sell.

There is a danger that the code you develop will not be accepted into the
project. When this happen one choice FLOSS provides you is the possibil-
ity to fork the original project, that is to take the source code and distribute
your own version. This is a danger taken seriously by the FLOSS com-
munity. This do not happen frequently because among other reasons you
have to build a community around your distribution and because you can
not take the trade mark. If the time you spent on making code that are not
accepted was measured in money, as it would be in a corporate setting, it
would be considered a great waste.

Because FLOSS project often depend on contributions from many devel-
opers and because FLOSS do not suffer from the tight schedules that are
common in corporate settings, you both have the incentive and time to
give proper structure and documentation to the code being developed. For
new people to be able participate it is important that the entry level to un-
derstand the code is not prohibitively high.

When Netscape Communication decided to release the code for their browser
they had to restructure the code. Their browser was developed in a corpo-
rate setting with a tight schedule, but when they wanted to build a com-
munity of voluntary developer around the browser Netscape understood
that it had to represent the code in a more communicative way. Still after
restructuring the code it was found to difficult to build upon. The Mozilla
project which the FLOSS project that spun off from the Netscape source re-
lease was named, decided to build the browser based on the FLOSS Gecko
layout engine. This allowed for a much more modular design of the code,
which made code contribution much easier.

5.3 Motivation

According to Steven Weber in his book The Success of Open Source (Weber 2004)
there are two principal forces at work in FLOSS, individual motivation and
governance. He is actually saying a bit more than that, but this is my nut-
shell interpretation of what he says. I think he has a good point so here I

5.3 Motivation 90

will take a brief look at what motivates people to participate in FLOSS and
in the next section I will look at governance structures in FLOSS projects.

Because participation in an open source project is basically voluntary, indi-
vidual motivations for participation is a critical aspect of the open source
community. At first it can seem strange that people would spend countless
hours in front of their computer doing hard, time consuming and some-
times even frustrating work. My experience as a programmer is that at
many stages in development you face frustratingly hard challenges. This
work is often done with small possibilities of ever making money from the
effort. Is this done with the altruistic motivation of giving others useful
software, or are there other motives behind this?

Although I said that programming challenges can be frustrating at times,
to overcome this challenges is a relieving and fulfilling sensation. My first
guess therefore of why people choose to contribute is because we as hu-
mans have a longing to create. We are not happy with only food and com-
fort. In our western world food and comfort is a commodity, and there is a
limit to how much money you need to make a good living. If your choice
stood between doing creative and interesting work for free and repetitive
boring work for money, what would you choose? When you have enough
money to pay your bills why would you choose a boring job for its pay-
ment? That is if you don’t see money as an end in it self.

Research on motivation and performance shows that external rewards in
the from of bonuses etc. for performance will reduce creativity and the
intrinsic interest in the task, if the focus becomes directed to the reward.
Not only do it not help much in creative task with extrinsic rewards, it
actually often lead to poorer performance. If you are rewarded for a task
the task itself becomes only a mean to an end and therefore the interest in
the task is reduced. This is illustrated by this joke (Kohn 1987):

An elderly man, harassed by the taunts of neighborhood chil-
dren, finally devises a scheme. He offered to pay each child
a dollar if they would all return Tuesday and yell their insults
again. They did so eagerly and received the money, but he told
them he could only pay 25 cents on Wednesday. When they
returned, insulted him again and collected their quarters, he in-
formed them that Thursday’s rate would be just a penny. “For-
getit,” they said - and never taunted him again.

Rewards and punishment can have a short term effect on modifying be-
havior. For mindless repetitive tasks, which have little intrinsic motiva-
tion, extrinsic rewards will increase performance. This is because the task

5.3 Motivation 91

is seen as having little value in it selves. For tasks where the quality, un-
derstanding, learning and creativity is more important than the quantity
(like computer programming) intrinsic motivation is most important. If an
extrinsic reward is seen as confirming the quality of your work, and your
competence, it can be helpful. If the extrinsic reward is seen as way to
control your behaviour it is counterproductive.

The action of handing out your work through a license like the GPL might
seem altruistic, but I don’t think altruism is the primary driving force be-
hind FLOSS. If you contribute because of an urge to create does not mean
that you have the good of others in mind. This urge to create you can see in
other endeavours like art. I see some similarities in what motivates people
to do art and what motivates people to hand out their code to the public.
Both comes from an urge to create and perhaps change the world just a
little. This urges are not necessarily altruistic.

In his book Weber propose a scheme that captures six kind of motivations
seen among FLOSS developers.
1. Art and beauty
2. Job as vocation
The joint enemy
Ego boosting

Reputation

AL .

Identity and belief system

I will not elaborate too much on this points. This points needs more expla-
nation, however. Art an beauty I have already mentioned which relates to
Job as vocation. The work of programming is more than a job to put food
on the table. The Joint enemy with Microsoft as the obvious villain, which
is a primary motive of only a few according to a survey made by Boston
Consulting Group (Weber 2004, page 139). This is important none the less.
As a teacher in history I once had frequently said, an outward enemy cre-
ates inward unity. Microsoft, as an enemy, is something FLOSS developers
can identify as being in opposition to. Ego boosting in FLOSS does not mean
boasting about your excellence as a programmer. Such behavior is gener-
ally not approved. The point of ego boosting in FLOSS is that your work
boast for you. The point of reputation is both because a good reputation
give an external measure on the quality of your work and because it help

5.4 Governance 92

others to determine your quality as a programmer. To have a good reputa-
tion helps in a competitive job marked. Identity and belief system refers to a
common identity and common values among FLOSS developers.

The Hacker Survey segments the hacker community according to motiva-
tion. The respondents are segmented into four groups:

Believers 33% of the respondents. Participated in FLOSS because they be-
lieve source code should be open.

Fun seekers 25% of the respondents. Do it for non-work need and intel-
lectual stimulation.

Professionals 21% of the respondents. Do it for work need and profes-
sional status.

Skill Enhancers 21% of the respondents. Do it to improve coding and
other related skills.

5.4 Governance

Although the FLOSS community is very individualised it is not enough to
explain FLOSS by individual motivations. Individual motivations is the
cornerstone of the community, but efforts needs to be coordinated. Unlike
many genre of art you need to work closely with other practitioners of the
coding “art”. It is simply to much work to do for one individual alone. For
small projects with just a few developers, which is the majority of FLOSS
projects, the question of governance and management is not very impor-
tant. It is only for projects of some size that the previously mentioned N2
effect (Brook’s Law) becomes relevant.

Maybe the most important aspect that help to frame the FLOSS commu-
nity is the license. This is mentioned in section 5.5. But other factors are
important in how FLOSS is governed. A basic value of the community
is that your work speaks for you. It is at its core a meritocracy. Accord-
ing to the survey previously mentioned 48.4% of the respondents men-
tioned among the three most important things a leader should do, that
the leader should “Create initial code base”. 34.4% answered “Contribute
code” (Lakhain et al. 2002). This shows that the ability of a leader to create
code is what legitimise him most as a leader.

Linux is an example of such. Linus Torvalds started the development of
Linux as a post graduate student. He initially released a small, but work-
ing kernel. Many others later joined the project, but Torvalds still have the

5.4 Governance 93

final saying in what is going to be incorporated in the official releases of the
Linux kernel. Torvalds gained his initial leadership role because he made
the first release. He kept his leadership role and avoided forking because
of a combination of responsiveness and charismatic leadership. Because
he responded to patches and suggestions contributors felt that their work
were appreciated. After the Linux kernel and the Linux community grew
Torvalds had problems responding to the community, because it was to
much for one man to do. This is often called the “Linus don’t scale” prob-
lem. This was solved by giving the responsibility for different sub systems
of the kernel to lieutenants, who could approve patches. This made the
Linux project into a hierarchical ordered organisation.

This story about Linux points to tree important organising factors common
is FLOSS. That is the right to submit code into an official release, charis-
matic leadership and meritocracy. Because it is difficult to build a commu-
nity of developers around a forked version of code, the ability to decide
what is to be included in an official release gives power. The charismatic
leadership of Torvalds is important for Linux, but other forms of organisa-
tion exists. In the Apache Foundation a board is elected by the foundation’s
members. In that kind of an organisation charismatic leadership is less im-
portant. In all cases the time, effort and skill you put into making working
code is what most give you the power to influence an FLOSS project.

Even if the management in FLOSS is not strong and coercive and most of-
ten do not have the power to punish and reward, it is still important with
management. As we have seen punishment and reward is a poor motiva-
tor for creative work, so the more informal structures in FLOSS is an asset.
Successful management is FLOSS is more in the spirit of this saying of Jesus
(Matt 20:25-26):

You know that the rules of the Gentiles lord it over them, and
their high officials exercise authority over them. Not so with
you. Instead, whoever wants to become great among you must
be your servant, and whoever wants to be first must be your
slave.

Management in FLOSS must be with a serving attitude. If a developer
do not like the way he is treated he can just leave, and there is also the
possibility of forking the code. This to not imply toothless leadership, you
must be able to give direction and convince others about your decisions.

Weber tries to capture what FLOSS participants do and how project are
managed in the following eight point. This points are most relevant for
the projects which are based on the bazaar model, or as I prefer to call it a

5.4 Governance 94

community model. This is because community gives more sense of identity
and structure than the word bazaar.

1. Make it interesting and make sure it happens. FLOSS developers choose
to participate and chooses which tasks they want to contribute to.
Many of the tasks that needs to be done to make good software is
uninteresting. What is thought of as interesting or uninteresting will
vary among contributors. With a community of some size associated
with the project, a project leader can hope that someone will find a
particular task interesting or valuable as a learning experience. To
make sure an uninteresting piece of work get done, the project leader
engage the community and encourages someone to step up to the
task. Doing such tasks increases a contributor’s standing in the com-
munity.

The contributors want their work to be appreciated by seeing their
work getting into actual use. Projects that looks like it will generate
significant products will attract more contributors. If the project can
offer interesting programming challenges it is even better. The con-
tributors don’t want to waste their effort on dead-end projects.

2. Scratch an itch. The itch a FLOSS developer can scratch is the problems
he faces in his immediate environment. Most software code is written
for in-house use, estimated to about 75%, and are not written for sale.
It is much more cost efficient for a business to contribute to an existing
project to make it useful for a specific in-house use, than it is to build
the same from scratch. Besides, this releases the business from main-
taining a lot of in-house built code. For hobby programmers there are
other itches. Linus Torvalds wanted to have an operating system sim-
ilar to the one they had at the university, at home. People contributed
to Emacs because they wanted the editor to do more useful tings.

3. Minimise how many times you have to reinvent the wheel. To write good
quality code is hard and time consuming work, so FLOSS develop-
ers tries to avoid writing code for problems that are already solved,
whenever this is possible. Volunteer FLOSS programmers have an ex-
tra strong incentive to avoid this, since they are not compensated for
their time. Within proprietary settings there is constantly a need to
reinvent the wheel, since the code is not available to the competitors.

4. Solve problems through parallel work process whenever possible. In the
conventional engineering archetype there is one or a few architects
that are responsible for deciding what need do be done, and to dele-
gate sub-tasks to the hierarchy beneath the architects. The architects
defines the problems that needs to be solved. On a FLOSS project the

5.4 Governance 95

project leader can set the effective definition of a problem that need
to be solved, in other cases the definition can be given by a desired
feature request, suggestions or by the discovery of bugs. There can
potentially be many ways to solve a problem. By attracting a number
of developers to work on this problem different routes to a solution
can be explored. No central authority decides which routes should be
explored or who should explore them.

There can also be problems that are not tied to a specific project. One
example is the problem of making and displaying dynamically cre-
ated web content. This have given rise to many different web devel-
opment frameworks. Different solutions to this problem have given
rise to different projects.

5. Leverage the law of large numbers. Even a moderately complex program
has a functionally infinite number of paths through the code. To dis-
cover bugs in the code as many as possible of this paths should be
tested. The developers of this program have preconceived ideas of
how this program are to be used. The consequence of this is that only
a tiny portion of the possible uses of the software will get tested by a
few developers. By submitting the code to massive peer review, and
by letting many people use the software, more bugs will get uncov-
ered, and the fix will be obvious to someone. “Given enough eye-
balls, all bugs are shallow” (Raymond 2001) is a phrase used to de-
scribe this. By having different people doing different things with the
software more bugs will get uncovered. The bug can then be commu-
nicated to an audience of possible fixers. For one of these the fix will
be obvious. Lastly the fix have to be incorporated into the main code
base.

6. Document what you do. Documentation is important in both proprietary
and FLOSS settings. It is difficult and time consuming to deduce how
a program, or piece of code, function by simply reading the code.
In proprietary settings developer documentation can often be substi-
tuted by face-to-face communication because of the proximity of the
developers. Proprietary software can be developed in a distributed
manned within a large enterprise, and FLOSS can be developed by a
tightly knit group without contribution from the outside. Distributed
development is more common in the FLOSS setting, and is facilitated
by the openness of the code and the liberal licences for distribution.
For distributed development good documentation is important for
the different contributors to get up to speed on what can and should
be done. To attract volunteer user-programmers into contributing to
a project good developer documentation is a way to lower the en-
try barrier. Developer documentation transfers the knowledge of the

5.5 Property, Copyright and Licenses 96

software author across time and space. Good user documentation is
equally important for FLOSS and proprietary software, if they want
their software to be used.

7. Release early and release often. FLOSS project built on the community
model can harvest more contribution by early and frequent releases.
In this way contributors can see the result of their contribution quickly
and bugs can be discovered more quickly. If the number of new fea-
tures contributed to a project gets too high it can overload the se-
lection mechanism, selecting which features to include in the official
release. Each new feature included can contain new bugs, so the num-
ber of new features have to be balanced against the desired stability of
the code. This is why many project have a development and a stable
release.

8. Talk a lot. Interaction is the mean by which social systems are changed
and replicated over time and space, to recapitulate a central concept
from structuration theory. In community based FLOSS projects the
activity on e-mail lists, discussion forums and other mediums for
communication is fundamental in creating communal identity around
a project. A common misconception about the community based
FLOSS process is that it involves like-minded geeks who cooperate
and agree with each other based on technical grounds. The tone of
conversation if often far from calm and polite, and disagreements,
frustrations and criticism are openly vented. Discussions about tech-
nical problems is generally grounded in a belief that there exist a tech-
nical solution. However, the solution is not always obvious and there
can be many contending solution.

5.5 Property, Copyright and Licenses

Licenses acts in the FLOSS community almost like a constitution. It gives
the fundamental “rules of the game”. It is through licenses the basic princi-
ples of FLOSS is maintained. There exist many different licenses that claims
to be FLOSS. In an effort to state some formal principles on what constitute
FLOSS the OSI www.opensource.org have made the Open Source Definition.
Based on this definition OSI offers certification of licenses to help people
distinguish between what is and what is not a FLOSS license.

Those licenses that are approved by OSI can be divided into two categories.
The first is the GPL style license and the second is the BSD style license.
GPL is an acronym for General Public License and is one of the most used
licenses. The GPL license was made by FSF in order to make free software

www.opensource.org

5.5 Property, Copyright and Licenses 97

possible within the current copyright regime. In the GPL license the author
gives explicit rights to copy, modify and distribute software. In addition
it requires software derived from GPL code to be licensed with GPL. This
requirement is often called the “viral” clause, particularly by its opponents.

The purpose of the “viral” clause is to stop anybody from taking free soft-
ware, modify it and release it under a proprietary license. When Richard
Stallman was working on a Lisp interpreter a company called Symbolics
asked to use his interpreter. Stallman gave them a public domain version of
his interpreter. Symbolics extended the Lisp interpreter. When later Stall-
man wanted to access this extensions he was refused. The primary reason
behind the GPL is to prevent this kind of behaviour. FSF designed the GPL
to make sure that once software is made free it stays free.

The BSD kind of licenses is similar to the GPL style license, it allows for
modification and distribution, except it does not have the “viral” clause.
The BSD license in it self is made by Berkeley University and is very per-
missive. It basically says that you can do what you want with it, but use it
at your own risk.

Free Soffware

(/Public domain] Proprietary

[(XFree86 Style]

Closed
Copylefted \
N

Free Download

Open Source

Figure 5.1: Diagram by Chao-Kuei that explains different categories of soft-
ware licenses

Weber (2004) interprets this to mean that the difference between this two
styles of licenses are based on different interest in the software. The GPL
style license are based on a long term interest in the software, it’s intention
is to keep the software free during the whole life cycle of the software. It
is based on a philosophy that software should be free (as in free speech)
and therefor the license must secure that the software stays free. The BSD
style licenses is made by an university which is often not interested in the

5.6 Challenges and constrains of FLOSS 98

software on a long term basis. After a research project is finished the re-
searchers wants to move on to other projects. The BSD style license is also
preferred by many in the business world because it makes it legal to make
proprietary derivation of the work.

A variation on the GPL style license is whether the license allows propri-
etary software to link with the licensed software. This allows proprietary
software to use the licensed software through calling it’s functions /methods,
extending its classes, implementing its interfaces and similar methods of
linking to the software. Extension to the software itself must be released
under the same license. The original GPL do not allow this, but the Lesser
General Public License (LGPL) do. The intension is to spread the use of the li-
censed software, even as part of proprietary software, but at the same time
to ensure that the software itself stays free. GNU calls this license Lesser
because it only encourages it to be used for libraries, databases etc., where
there already exists proprietary alternatives. For a figure on the different
categories of software licenses see figure 5.1.

5.6 Challenges and constrains of FLOSS

In this section I will identify some tentative challenges and constraints of
the FLOSS process. This I have identified from reading about FLOSS and
from talking to different people. I do not have any references on this and it
is only my opinion, based on direct and vicarious experiences.

One of the greater challenges meeting FLOSS at this time is the limited
focus given the end user experience, or wrapping if you will. For many
commercial products the wrapping is one of the most important elements,
if not the most, that need to be in place in order to sell. The wrapping is
the first thing a user sees, and first impression is important. Many hacker
dislike “bells and whistles” which is functionally unnecessary but visual
pleasing. Hackers often prefer the command line, and some even look at
GUIs with a certain antipathy. I do not think this is a limitation in the
FLOSS process. FLOSS have just recently come to a level of maturity where
it is meaningful to focus on end user experience. Now that there are tools
available to work with image processing and good libraries to build GUISs,
and more people are aware of FLOSS, people who have an eye for esthetic
qualities can be attracted to contribute.

Everybody, even FLOSS developers, needs to earn a living. Before anybody
is willing to contribute for no monetary benefit they have to have food on
the table and be able to pay their bills. When a developer has to prioritise

5.6 Challenges and constrains of FLOSS 99

his time, voluntary labor will most likely loose to labor the developer are
paid to do. Some FLOSS developers are payed for their work, this frees the
developer’s time, but most developers are not. Getting large contributions
from companies, or being hired by a company to work on a FLOSS project,
can free a developer’s time. This can unfortunately create conflict of inter-
est between commercial interests and the interest of non-commercial users
or user-developers. Projects run into the danger of being co-opted by com-
mercial interests.

Free-riding, where someone use the software but never contribute back, is
not a problem if the free-rider is an individual user. To have many users,
contributing or not, is an asset to a FLOSS project. Except for download
bandwidth, it cost no more for a project to have ten thousand compared to
one million users. A large user base creates a positive network effect where
the users do marketing for the software, and they do support by helping
their friends. For commercial user making good money from FLOSS the
question of free-riding is different. This is the primary reason for the “viral”
clause in the GLP license.

A majority of FLOSS projects are small and a lot of effort is “waisted” on
marginal projects. Because this is done voluntarily it has no monetary cost.
If the time spent on coding a piece of code that never came into active use
were to be given monetary cost my guess is that the “losses” would amount
to a lot of money. In a proprietary setting there is also much waisted ef-
fort, but here it cost money which is an incentive for management to avoid
waisted effort. In a FLOSS setting efforts cost time which is an incentive for
the developer to avoid waisted efforts.

FLOSS do not have the marketing power of large corporations' and FLOSS
do not have the same distribution network as conventional merchandises
have. The most important distribution channel for FLOSS is the Internet,
and the most important marketing channels is the Internet and the users.
Linux distributions like RedHat and SuSe bundles Linux and a lot of other
FLOSS programs and sells it through conventional distribution channels,
but they are the exception and you are not likely to find them in a software
shop in Africa. To effective use FLOSS a descent Internet connection is al-
most” required. There is also a lack of support from the hardware industry.
Many hardware producers are reluctant to provide drivers to Linux and
even more reluctant to release them under a FLOSS license.

One result of the FLOSS process which is an advantage as the same time
as it is a disadvantage is the number of choices available to users. To be

'Microsoft have the huge advantage of having their operating system pre-installed on
most of the PCs sold.
’The Ubuntu Linux distribution ships CDs to anybody on request.

5.7 FLOSS in developing countries 100

able to chose is generally a good thing, but choices requires some effort to
obtain the knowledge needed to make a good decision. It takes time to
get a general overview of the FLOSS scene. There is a bewildering num-
ber of choices. Take for example the number of Linux distributions. For
those who have a passion for programming and computers this can be an
acceptable cost. For those who use the computer only to get the job done I
suppose it can be more appealing to just have one choice, which is just good
enough. One appealing aspect of the one-choice approach which Microsoft
offer is the freedom from the burden of having to choose. There is business
opportunities in offering this same safety by acting as a proxy for FLOSS
software, like Linux distributions are sort of doing, and some consultancy
firms are doing for business customers. Still there is a great many Linux
distributions and consultancy firms to choose from.

US Patent laws create legal headaches for Linux distribution because they
risk being sued if they bundle software which violate a patent. Lawyers
earns good money on patent issues because patents is so open to interpre-
tation. In the US you can file software patents (on a algorithm or process),
in Europe you cannot do this. Linux distributions generally want to dis-
tribute their distribution to the US and have to be sensitive to US patent
laws. This is the reason why some software is not bundled on the regular
CD, but have to be downloaded separately from the Internet. The patent
issue chiefly affect multimedia applications because of patents on compres-
sion/decompression algorithms.

5.7 FLOSS in developing countries

In this section I want to look closer into how FLOSS is applied in devel-
oping countries. The awareness of FLOSS is rising in developing countries.
The reasons for this growing awareness are because of, among other things,
the danger of falling into a dependent relationship with software vendors,
the potential lower cost of FLOSS, the open standards FLOSS promotes,
the ability to inspect code for national security reasons, less vulnerability
to viruses and the possibility of fostering home grown computer industries.

5.7.1 Advantages FLOSS offer

FLOSS efforts in developing countries have received attention from the
mainstream media, this has created some hype around FLOSS, but a quick
web search will show that the hype is not altogether unfounded. Cover-
age in the media have the tendency to make technology sound like “silver

5.7 FLOSS in developing countries 101

bullets”. FLOSS is not a “silver bullet” for developing countries, it requires
hard work, but offer real advantages.

One of the great advantage FLOSS offer is that it removes the control over
the software from software development companies. If a government chooses
to sponsor a FLOSS project instead of buying it from a company, the gov-
ernment is not dependent on updates from one company. In developing
counties in particular, fostering of home grown industries is a major con-
cern. If the government choose to take advantage of the rich body of FLOSS
software, and hire people to adapt this software to the needs of the govern-
ment, you have two advantages. First you build up the capacity of the
home grown computer industries, and second you can pay in local cur-
rency. As small amount of foreign currency is a problem for many coun-
tries, this is an advantage.

It is common for government bureaus to develop their software in-house
without releasing the source, but in the longer run it will most likely be a
major challenge to maintain the software. If the software on the other hand
is released with a FLOSS license more government and non-government
organisations can benefit from the software and share the load of mainte-
nance. When the software develops over time by the contribution of many
independent actors the software is more likely to stay in sync with chang-
ing demands. It may no longer be necessary to rip out old software and
exchange it with new software. This is often the case for in-house devel-
oped software, because the ones who made the software are long gone,
and the code is to difficult to maintain. When the code is developed by
many independent actors you have to program in such a way that other
can understand what you have done, without too much difficulty.

To use proprietary software legally you will most likely have to buy a li-
cense. The license often require companies to pay for every user using the
software. Even if the software is placed on a server, and used by clients
through a network you have to pay a license fee for every client allowed
to connect. With FLOSS you do not have any such license cost. When
you have software with a FLOSS license on a server, any number of clients
can legally use it. In this way developing countries do not have to pay
money from their limited foreign currency pool to a company in the devel-
oped world. Piracy in the developing world makes this a weaker argument
(Rajani 2003).

Perhaps the greatest advantages with FLOSS, and which indirectly lies be-
hind the other advantages, is the learning potential that lies in FLOSS. Even
if the source code is unavailable for people who do not have knowledge in
programing, it gives the potential for those who have access to comput-
ers and who either can or want to learn programing, an insight into how

5.7 FLOSS in developing countries 102

programs have been created. Only a selected few can have a direct bene-
fit from this, it is few people who can read code and even fewer that read
it. Those few people that read and/or make code, can make the informa-
tion embedded in the code more available through making tutorials, and
teaching good programing practices learned from the code. Using business
jargon FLOSS can be seen as a massive donation of intellectual properly
rights into the developing world.

If you add open development processes and open documentation to open
source, the learning factor becomes even more significant. It is not neces-
sary to have open development process and open documentation in order
to call a project FLOSS, but it is often the case that e-mail archives, forums
and wikis is open for everybody with Internet access. There exists many
tutorials on programming languages and libraries which have been im-
mensely useful to me. If you have a problem chances are that some else
have had the same problem and asked about it on a forum/e-mail list, so
you can search the www for the answer. If you don’t find the answer you
can ask the question yourself.

5.7.2 Participation in FLOSS

According to the Hacker Survey only 7,5% of the 519 respondents were
from what I identify as a poor country. 42.2% were from Europe and 46%
were from the North-America. This show, not surprisingly, that the wealthy
and predominately western counties dominates FLOSS. North-America and
Europe dominates most sectors of the computer industry, but unlike other
sectors FLOSS gives developing countries a chance to catch up. The body
of code produced with an FLOSS license is freely available. There are, how-
ever, still limiting factors to this freedom. The two most important factors
that limits developing countries from contributing to and benefiting from
FLOSS is education and Internet access. Those fortunate enough to have
education and Internet access in the developing world can most certainly
contribute, provided they are sufficiently motivated.

India, China and Brazil are countries know be progressive in their sup-
port for FLOSS. In Brazil, FLOSS has strong government backing. Linux is
used in a number of Telecentros offering public Internet access, among other
things. China is know for its Linux distribution, Red Flag Linux. India is
known for the Simputer Personal Digital Assistant (PDA) based on FLOSS
software. All this countries have one thing in common, they are quite ad-
vanced developing countries. More advanced countries are better able to
effectively participated in the global FLOSS community. Even if poorer

5.7 FLOSS in developing countries 103

countries can participate less they can benefit from FLOSS as users of the
software.

A natural place for countries aspiring to use FLOSS in the developing world
to start their participation, is with the localisation of software. The Kiswahili
Linux Localization Project (http://www:.kilinux.udsm.ac.tz/) is an example of
such. This project’s mission is to localise FLOSS software. The project has
localised OpenOffice and Firefox. As we will later see localisation efforts is
also important in Ethiopia.

Ubuntu is an interesting distribution in the African context. Ubuntu was
founded by Mark Shuttleworth, a dotcom millionaire from South Africa.
Ubuntu focuses on user friendliness and call it self “Linux for human be-
ings”. To help people with slow Internet connection to get Ubuntu they
send CDs on request, free of charge. The Ubuntu distribution describes it
self in this way on its website:

"Ubuntu’ is an ancient African word, meaning "humanity to oth-
ers’. Ubuntu also means 'l am what I am because of who we all
are’. The Ubuntu Linux distribution brings the spirit of Ubuntu
to the software world.

The Ubuntu project is led by a company named Canonical which is reg-
istered on the Isle of Man, so Ubuntu is not strictly African though it has
African ties. A more strictly African Linux distribution is Impi Linux which
is an Ubuntu gold partner in South Africa. Impi Linux is a commercial dis-
tribution including third party proprietary software, unlike Ubuntu.

Rajani (2003) gives an overview of FLOSS efforts in Africa, Latin America
and Asia. It is about three year old and do not show the latest develop-
ments, but it is still a valuable reference. FLOSS in developing countries is
a fast changing field, like FLOSS generally is.

5.7.3 Projects for the developing world

Digital divide arguments and solidarity with the poor in developing coun-
tries have inspired the development of low cost computer hardware solu-
tions. In this section I am going to describe and discuss three project aimed
at giving computer and Internet access to people who are not able to buy
a conventional PC. All of this projects uses FLOSS software as part of their
solutions.

http://www.kilinux.udsm.ac.tz/

5.7 FLOSS in developing countries 104

The Simputer project (http://www.simputer.org/) has developed a PDA de-
signed to provide affordable computing to poor and illiterate people in de-
veloping countries. The Simputer is the first computer designed in India,
and was primarily designed with the rural poor and illiterate people of In-
dia in mind. Simputer uses a Linux based operating system, and initially
had a few applications thought to be relevant in a rural Indian context. A
prototype of Simputer was finished in 2001 and since that time two com-
panies, PicoPeta and Encore Software have started to manufacture and sell
different version of Simputer. Simputer has not become the success it was
hoped to be, initial sales have been low. In response to marked realities
the Simputer has been refined to include applications common to regular
PDAs. According to a SciDev.net article® 31st of July 2006, one of the initial
Simputer designers, Swami Manohar, is reported to have said:

The under-privileged want to have the same technologies the
privileged have, not some cheap stuff that do-gooders provide
for them.

The story is far from over for Simputer. Simputer was probably the first se-
rious attempt at making an affordable computer. Simputer shows how it is
possible to make computers based on FLOSS available to a bigger audience
in the developing world. Simputer is based in India, which is a developing
country. India is also known as a popular country for outsourcing software
development. This shows that a combination of computer knowledge and
openly available software and standards can give business opportunities
for developing countries. Without FLOSS I cannot see that a project like
Simputer would be possible. If all code were closed Simputer would have
had to license proprietary software giving less freedom in design and in-
creasing the overall price, or make the operating system and all the appli-
cations from scratch which would require a lot of man hours and finances.

The new hot candidate to provide low cost computer access is the One Lap-
top Per Child (OLPC) project (http://www.laptop.org/). OLPC is a non-profit
association which was formed by MIT Media Labs and funded by a number
of sponsor organisations including AMD, Red Hat and Google. OLPC have
partnered with Red Hat to provide software. This project aim at providing
laptops to children, the chairman of OLPC, Nicolas Negroponte, says that
OLPC is about learning and exploration, not giving kids costly tools and
toys.

OLPC is based on constructivist theories of learning pioneered

Shttp://www.scidev.net/content/features/eng/pcs-for-the-poor-as-good-as-their-hype.cfm

http://www.simputer.org/
http://www.laptop.org/
http://www.scidev.net/content/features/eng/ pcs-for-the-poor-as-good-as-their-hype.cfm

5.7 FLOSS in developing countries 105

by Seymour Papert and later Alan Kay, as well as the principles
expressed in Nicholas Negroponte’s book Being Digital’*.

OLPC and associates are in the process of developing a laptop specially
designed for children in the developing world. The design goals of the
laptop is to make it robust and durable, able to withstand dust and heath,
and able to operate where there is little or no electricity. It is going to be
equipped with long range wireless hardware able to do ad-hoc Peer-to-Peer
(P2P) networking, or mesh networking as it is also called. In this way in-
formation can be sent between the laptops and if one laptop is connected
to the Internet, all the laptops in the mesh get connected to the Internet.
It is going to have a low cost dual mode display, one color laptop mode
and one monochrome mode for reading books. For electricity it is going to
use batteries and perhaps some sort of manual electricity generator, like a
hand-crank, in addition to regular power. It is planned to run on a Linux
based operating system provided by Red Hat. The price of the laptop is
planned to eventually get lower than $100.

A prototype was presented on the World Summit on the Information Society
(WSIS) in November 2005. Since that time many different prototypes have
been made. The OLPC projects relies on large orders from governments
to sell this laptop. At this time OLPC only accept order of over 1 million
units, and production will not start before the orders have passed 5 mil-
lion units. Several countries have shown interest; Nigeria, Brazil, China,
India, Egypt, Argentina and Thailand are among them. India has pulled
out of the project. The Indian Ministry of Education dismissed the laptop
as “pedagogically suspect””.

This ambitious project has received a lot of press, being praised and crit-
icised. The design of the laptop is innovative, and the price tag is ap-
pealing compared to existing alternatives. It is an interesting device which
can, among other things, make more books available to children and their
family, if books are allowed to be distributed electronically for little or no
charge. A major flaw with OLPC is that the design and distribution is done
in a top-down manner. The project with its constructivist pedagogy and
sole focus on children, can easily be perceived as a way to impose US lib-
eral values on the developing world. There seem to be an overall lack of
cultural and contextual sensibility in this project. Lee Felsenstein at the
Fonly Institute identifies some thought through problems with the OLPC
approach®.

*http://wiki.laptop.org/go/One_Laptop_per_Child
Shttp:/lwww.theregister.co.uk/2006/07/26/india_says_no_to_olpc/
Shttp://fonly.typepad.com/fonlyblog/2005/11/problems_with_t.html

http://wiki.laptop.org/go/One_Laptop_per_Child
http://www.theregister.co.uk/ 2006/07/26/india_says_no_to_olpc/
http://fonly.typepad.com/fonlyblog/ 2005/11/problems_with_t.html

5.7 FLOSS in developing countries 106

Negroponte is known for his techno-utopianism, apparent in his book “Be-
ing Digital”. Negroponte has a techno deterministic view of technology,
the laptop is imagined to have a predetermined effect, where for example
the children learn about mathematics by making a program that draws a
circle. Resistance to the laptop is perceived as backwardness and techno-
phobia, children do not have all this “baggage” and are more receptive to
technology. This is one of the reasons the project only focuses on children.
Experiences obtained from IS research show that the effect of technology
is not predetermined, but dependent on the context within which it is ap-
plied. Some of the children will perhaps only use the laptop to play games,
and as a consequence homework and house duties will not be done.

The sole focus on children without regard to the family, teacher and local
community can also become a problem. The laptops can empower children
at the expense of the family and the teacher. The teacher should at the very
least have a laptop too. There are more pressing needs in many schools
in developing countries, and the value of laptops in teaching and learn-
ing is uncertain. I guess this and the constructivist pedagogy, are some of
the reasons the Indian Ministry of Education calls this project “pedagogi-
cally suspect”. Even if the laptop manage to sell in sufficient quantity, it
still needs software useful for children in various countries, software that
facilitates learning not time-killing. Despite all this reservations it is clear
that OLPC has at the very least been successful as a marketing campaign
by raising attention to low-cost computing for developing countries.

The last project I am going to review is Ndiyo (http://www.ndiyo.org/). Ndiyo
is the Swahili word for “yes”. Ndiyo is a non-profit organisation based
in Cambridge UK. The vision of Ndiyo is to provide low-cost networked
computing, making computing affordable to more people. The fundamen-
tal idea to provide this is through ultra-thin-client computing and FLOSS.
Thin-client networking is a solution with one powerful server, having all or
most of the software, and a number of less powerful clients with minimal
software. In the ultra-thin-client scheme promoted by Ndiyo the thin client
do not have any hard-disk and a minimal set of I/O devices. Nidyo started
with a monitor, and asked what was the minimum they could add to make
it into a workstation. A company called Newnham Research was created
based on this idea, and they invented the nivo (Network In, Video Out).
This is a box to which you can connect a network cable, a monitor, a mouse
and a keyboard. This device get compressed pixels from the server which
is decompresses and sent to the monitor, so all computing is done on the
server. Using the nivo boxes and Ubuntu Linux on the server, Ndiyo has
come up with a working solution.

The ultra-thin-client solution is similar to the terminals of the mainframe

http://www.ndiyo.org/

5.7 FLOSS in developing countries 107

area, but with thin-clients the user can get individualised displays. The
PC has now become so powerful that a single one is powerful enough for
many users. That is if the users do not play graphics intensive games, do
video editing or make complex 3D animations. The ultra-thin-client com-
puting solution is cheaper than the conventional networked PCs, but the
greatest advantage in my opinion is the lower maintenance burden. There
is nothing in this solution that mandates the use of FLOSS, but the use of
FLOSS lower the total price of the thin-client network. This seems like a
reasonable solution for Internet cafes, tele-centers, small offices and com-
puter rooms in schools. Newnham Research currently market something
they call the USB nivo, which is a device to connect monitors to a PC using
an USB 2.0 port. Newnham Research seems to have distanced themselves
from Ndiyo, Ndiyo is not mentioned once on their current web site.

All three of this projects are idealistically motivated to provide comput-
ing to poor people through low-cost hardware. Even if this projects are
idealistically motivated there need not be anything idealistic about provid-
ing low-cost hardware. Providing low-cost hardware can be seen as a way
to leverage emerging markets, low-cost hardware sold in large quantities
can generate a handsome profit. The big hardware vendor Intel and the
big software vendor Microsoft, have got their eyes opened to a potential
marked in lower cost computing. Intel has started the World Ahead Program
and is closely collaborating with Microsoft to provide lower-cost comput-
ing. Intel has made a laptop marketed as a learning device, which was for-
merly codenamed Eduwise. Microsoft has a PC purchasing model called
FlexGo on the drawing board. With FlexGo the customer only pay a part
of the cost for a new PC up-front, and the rest is paid by prepaid cards or
a subscription with monthly payments. Intel has promised to invest $1 bil-
lion in India during the next five years. The World Ahead Program is a key
part of this investments.

5.7.4 FLOSS participation and use challenges

In this section I will try to identify some of the challenges that are unique
to developing countries when it comes to both using FLOSS software and
participating in the FLOSS community.

Education is known to be an important factor for developing countries to
be able to grow. This becomes even more true as we move into a post indus-
trial era where ideas and manipulations of ideas becomes an increasingly
important part of the global economy. FLOSS is at its very core a prime ex-
ample of how ideas and manipulation of ideas can be used to create value.
To be able to benefit from the opportunities that FLOSS provide, a certain

5.7 FLOSS in developing countries 108

level of knowledge is demanded. The ability to use software applications
certainly requires some knowledge from the user, and perhaps even more
to be able to use certain FLOSS applications. However, to be able to not
only use, but to contribute to FLOSS and localise FLOSS applications, a
much higher level of knowledge is required.

Considering, as the case is in Ethiopia, that only towns and cities have elec-
tricity there is for most people in the developing world a long way to go
before computers becomes a commodity. Even if I am a computer scien-
tist who like computers, I have to admit that for many people there are
more pressing needs than getting a computer. Since the number of com-
puter users with an Internet connection compared to the total population
is lower in developing countries, there is also less people to be attracted
into use of FLOSS and participate in FLOSS.

On a practical level I can mention one thing that can limit the adoption of
Linux in the developing world; the lack of support for many softmodems.
Softmodems are low-cost modems where most the of work is done in soft-
ware. It is difficult to make drivers for this devices because so much has to
be done by the driver. Many softmodem producers are reluctant to release
drivers to Linux. In the developed world broadband access to the Internet
has become so common that there are little interest among FLOSS develop-
ers in making softmodem drivers, there basically is no “itch” to “scratch”.
In a weblog called Meskel Square, Andrew Heavens faced this problem
when installing Ubuntu Linux on a laptop’. Dial-up access is still the most
common and sometimes the only mean, to connect to the Internet in devel-
oping countries. Internet access is a necessity to participate in FLOSS, and
a great advantage to effectively use FLOSS.

There are also broader social and political issues that can limit the appli-
cability of FLOSS. (Rajani 2003) mentions bureaucracy, corruption, “brain
drain”, political freedoms and legal framework. Many of this issues do
not directly limit FLOSS, but can have an indirect influence. Rajani men-
tions bureaucracy as perhaps the most fundamental barrier to wider FLOSS
adoption. It is common to think of bureaucracy as constraining, but it can
be enabling as well. Bureaucracies can be fundamental in implementing
plans for wider adoption of FLOSS.

"http://www.meskelsquare.com/archives/2006/06/ubuntu_the_diff.html

http://www.meskelsquare.com/archives/ 2006/06/ubuntu_the_diff.html

Chapter 6

Health Information Systems
Programme (HISP)

The Health Information Systems Programme started as a pilot project in
South Africa in the wake of the apartheid regime. The legacy of apartheid
was inscribed into the health information systems of South Africa. In its
tirst phase HISP was a collaborative research project between research and
health institutions in South Africa and Norway. Over the years HISP has
evolved into a global Health Information System (HIS) network with nodes
in South Africa, Norway, Mozambique, Ethiopia, Vietnam, Tanzania and
India.

HISP want to promote the usage of empirical founded information for de-
cision making in the health sector. The overall goal is to empower the poor
and the marginalised of the world. Based on experience from South Africa
and other nodes in the network, guidelines on the kind of information that
should be gathered and best practices in gathering and applying this infor-
mation has been made. On a more practical level the software DHIS has
been developed to support data gathering and analysis.

In this chapter we will first step through important steps in the history of
HISP. Then I will present the philosophy forming and the methods pro-
moted by HISP. This methods together with DHIS is being exported by
HISP to various countries willing to give it a try. I will give a short intro-
duction of the design goals behind DHIS, and how it helps to promote the
overall goals of HISP.

6.1 HISP history 110

6.1 HISP history

The first truly democratic election in South Africa, with no discrimination
on race, was held in 1994. African National Congress (ANC) won the elec-
tion and launched the Reconstruction and Development Program (RDP). This
program was initiated as a broad program which involved many different
parts of the South African society. The overall goal for the program was
to remove the relics of the former apartheid regime and build a free and
non-discriminating society.

The health system built during the apartheid regime was clearly discrim-
inating on race. There were fourteen different departments of health at

the central level. The “general” department, and “white”, “Asian” and
“coloured” departments, and ten for “blacks”, “homelands” and “self-governing
states”. To reform the health system several projects were initiated. HISP,
which focuses on health information, was initiated to this end.

HISP was established as a collaborative research and development effort
between University of the Western Cape, University of Oslo (UiO), and Uni-
versity of Cape Town. In 1996 HISP received founding from Norwegian
Agency for Development Cooperation (NORAD) for a pilot project in three
health districts in the Cape Town area. Two areas for research and de-
velopment were identified. The first was to develop an Essential Data Set
(EDS) and standards for primary health care data, the second was to de-
velop what would become DHIS. The relative success of HISP compared
to two other health information projects in South Africa lead to the official
endorsement of HISP. In 1999 to 2001 the software DHIS along with the
processes promoted by HISP were rolled out to primary health units in the
whole of South Africa.

Since the time of the pilot phase in Cape Town countries outside South
Africa have involved themselves in the HISP network. Mozambique have
been involved since 1998, India since 2000, Malawi since 2000, Tanzania
since 2001, Cuba since 2002, Mongolia since 2002, Ethiopia since 2002 and
Vietnam since 2004. HISP is not Cuba and Mongolia at this time. HISP also
has some relations with Nigeria and Botswana.

The South African version of DHIS was taken to different countries and
adapted by PhD and master students and to a lesser extent ICT profes-
sionals, to the local requirement of the country. The way of entry into
the different counties has been through two major entry points. The first
through university collaboration, and attempting to build alliances with
the health authorities. The second entry has been though the departments
of health, typically with support from outside actors like donor agencies

6.2 HISP philosophy, methods and processes 111

(Braa et al. 2004). The entry to Ethiopia has been through collaboration
with Addis Ababa University (AAU).

6.2 HISP philosophy, methods and processes

The word describing the overall goal for HISP and the reason for HISP’s ex-
istence is empowerment. HISP want to empower the poor and marginalised
through strengthening local health services in the developing world. Through
training district health staff in gathering and analysing data, both for local
use and reporting, HISP hopes to empower the district staff to give better
service to their health district.

HISP is founded within the academic community and is therefor both re-
search and action oriented. The research taking place within the HISP net-
work is almost exclusively founded within the discipline of action research.
The PhD and master students involved in HISP are adapting DHIS for
the local context, train users, negotiate with health authorities and health
workers and similar tasks needed to transfer the HISP methods and DHIS
to a new region or new country. At the same time the researchers are col-
lecting data for their thesis. There are health workers, ICT professionals
and managers within the HISP network who is not tied to the academic
community, but HISP have strong ties to this community.

Important to action research within the field of IS research is to involve all
the people affected by the IS into the design, development and implemen-
tation of the system. The intension behind involving the affected parties
into the process is to build a system more attuned to the users needs, and
to instill a feeling of ownership towards the IS, thereby increasing the ac-
ceptance of the system. This is perceived more “democratic” than building
a system in splendid isolation, and more likely to meet user’s needs. In the
IS literature this is called participatory design.

An important factor for HISP in South Africa was the development of an
EDS. Often the collection of data in the health systems in developing coun-
tries are data centric, which by consequence leads to lot of data being col-
lected with little thought on the usefulness of the data. HISP promotes
an action oriented approach to selecting which data to collect. Only data
which can give information leading to action should be collected. This have
given more focus to indicators and the data needed to calculate them. One
example is immunisation coverage. To calculate this indicator you need to
know how many children under one year have been fully immunized and
how many children under one year living in the area. By challenging the
data collected on usefulness an EDS is developed.

6.2 HISP philosophy, methods and processes 112

To empower local district staff and to lessen tension between what is per-
ceived useful information by different actors in the health system, the model
seen in figure 6.1 is promoted by HISP. The collection of routine data is of-
ten used to monitor and control the performance at lower levels in the hi-
erarchy. This is an important part, but HISP want to promote local use of
information. The combination of data used to report to higher levels and
data perceived relevant only at the local level gives the hierarchy of stan-
dards for EDS, indicators and procedures in the figure. The size of the EDS
grows less as it travels up the hierarchy. To support local use of information
it is important that information is travelling both ways in the hierarchy. A
region gathering data from the districts needs to report back data on the
other districts to each respective district. In this way a district can compare
itself to other districts, the regional total etc.

Standard
. Indicators,
Intermational IS procedures
nternational 18 & datasets:
Mational 18 . Community
ool Jele © o
Pmvincial Infommation Systems O Provinee
: : : . : : : O Mational
District Information Systems
Clejelel JeleleX @ o

Community & Health Facility Information Systems

Figure 6.1: HISP hierarchy of standards

A multiplicity of simultaneous processes are taking place within HISP at
the same time. There are nearly never any clear start or end to the processes
taking place. The process of transfer takes different forms in the countries
HISP are transfered to. The transfer of HISP to a new country is called a
horizontal transfer. Within a country the process of vertical transfer are
taking place. When HISP is transfered to a new region or districts, new
and distinct processes are taking place. In Ethiopia the transfer of HISP
to Addis Ababa was different from my experiences transferring HISP to
the Tigray region. Three broad categories of processes taking place can be
identified, however.

1. Garnering political and financial support First access to initiate HISP
in a new country must be given. This often happens through uni-
versity agreements or through the department of health. Within the

6.3 Inscription of the HISP approach into DHIS 113

country the HISP network expands through inter-institutional link-
age, and through people and institutions championing HISP.

2. HIS design, development and adaptations To adapt DHIS to a new coun-
try, standardisation through developing an EDS and indicators is needed.
DHIS then need to be adapted through filling in the organisational
hierarchy of the health system, the data elements, the indicators, and
other adaptations demanded. This is done as a participatory process.

3. Education and training To be sustainable, knowledge about HIS and
skills with HIS need to be developed and disseminated. This happens
through developing educational schemes to support national HIS de-
velopment, building master’s programs in informatics and public health,
and through support from the PhD and master programs at UiO and
other HISP countries.

(Braa et al. 2004)

A paper authored by prominent actors within HISP (Braa et al. 2004) calls
the approach used by HISP the networks of action approach. They conclude
that this approach is better at addressing sustainability of intervention and
is characterised by:

¢ Abandoning singular, one-site action research efforts in favour of a
network of sites.

* Generating local, self-sufficient learning processes and distributing
appropriately formated experiences between sites.

* Nurturing a robust, heterogeneous collection of actors likely to pur-
sue distinct, yet sufficiently similar agendas.

¢ Aligning interventions with the surrounding configuration of exist-
ing institutions, competing projects, and efforts as well as everyday
practises.

6.3 Inscription of the HISP approach into DHIS

In this section I seek to describe how the philosophies, methods and pro-
cesses described in the previous section has been inscribed into the DHIS
software. DHIS as an artifact is very important to the spread and practical
applicability of the HISP approach. This analysis is based based on the MS
Access line of DHIS, but I will try to make it sufficiently abstract to avoid

6.3 Inscription of the HISP approach into DHIS 114

getting into the technical particularities of the different versions of DHIS.
That I will come back to in the empirical part of this thesis.

Important to the spread of HISP is vertical scaling, relating to the hierarchy
of standard seen in figure 6.1. To make DHIS scale to all levels within a
county’s health system an organisational hierarchy are inscribed into the
system. Data can be fragmented down to the level of the reporting unit, and
data can be aggregated for all levels above the reporting unit. To facilitate
local use of information, and at the same time facilitate reporting to the
level above, a unit in the hierarchy can have any numbers of data elements
and indicators. Reporting is done by exporting data for data elements and
indicators required by the level above. This can then be imported into a
DHIS database at the level above.

To empower local health worker through local use of information, DHIS
offer support for data analysis at all levels. DHIS offer support for calculat-
ing indicators and making charts. Raw data, indicators and charts can be
shown at all levels of aggregation from the reporting unit and up. A district
information officer having received data from all the other districts in the
region can compare data from his district to that of the regional total and
with other districts. As mentioned data needs to travel both up and down
in the hierarchy to make this possible. DHIS also offer support for validat-
ing data to avoid mistakes and inaccuracies in reporting. This is needed to
make the data more reliable.

To facilitate horizontal scalability, that is transfer of DHIS to new countries,
DHIS is designed to be flexible. DHIS is not a ready made system, but
needs to be configured to be useful in a new country. The health hierar-
chy and all the health institutions have to be specified. All the indicators,
semi-permanent data (non-routine data used for indicator calculation etc.),
data elements, reports etc. have to be specified. DHIS is designed to make
building a database tool for a new country easy. To facilitate translation
of the user interface into new languages strings are not hard coded into
the system, but retrieved from a database containing the strings in differ-
ent languages. DHIS is basically divided between two parts; a stable core
and a flexible exterior. The stable core is the data structures and processes
being stable across different health systems. An hierarchical organisation
with clinics, hospitals etc., and administrative units are found in all mod-
ern health systems. The core parts of DHIS are the health system hierarchy,
the general concepts of data elements and indicators and the processes of
reporting and data analysis.

The MS Access line of DHIS (DHIS 1.x) is made with tools available in MS
Office. It uses MS Access, Visual Basic for Applications (VBA) and MS Excel.
The reason for choosing MS Office as the platform for DHIS was based

6.3 Inscription of the HISP approach into DHIS 115

on pragmatic considerations. The development of DHIS was initiated as
a part of the first pilot phase of HISP in South Africa in 1996 - 1998. MS
Office was already in widespread use in South Africa, with or without a
license, so the cost of obtaining MS Office was not considered a problem.
MS Office is an expensive office suite, but software piracy is so widespread
in many of the countries HISP operates that this cost have not become a
serious problem yet. Because MS Access is a RAD tool, it is a good tool
for rapid prototyping. The ability of HISP to get a working database tool
made within a relative short time was an important factor in making HISP
arelative success to the other HIS initiatives in South Africa. DHIS together
with pivot tables in MS Excel made DHIS more than a database tool. Pivot
tables offers a powerful tool for data analysis, giving user the ability to
make charts and diagrams of the data. The ability of MS Access to integrate
with other MS Office programs, like Excel, made the use of MS Access seem
like a natural choice. The availability of programmers skilled in VBA also
came into the consideration (Braa and Blobel 2003).

Part IV

Empirical Study

Chapter 7

The Ethiopian Context

In this chapter I will give a presentation of Ethiopia. This presentation
will be geared towards ICT and information relevant to FLOSS and HISP.
Ethiopia has a long history with many kingdoms having come and gone
in the past two thousand years. Ethiopia is currently one of the worlds
poorest nations with a GDP per capita at $800, and have been plagued by
war, drought and civil unrest for decades.

7.1 Demographics

Ethiopia

Capital Addis Ababa
Official Language Ambharic
Government Federal republic
President Girma Wolde-Giorgis
Prime Minister Meles Zenawi
Population 2005 est. 73 mill

Area 1127 127 km?
GDP 2005 est.

Total $60 billion

Per capita (PPP) $800

Life expectancy 2006 est.

Male 47.86 years
Female 50.24 years
Literacy 2003 est.

Male 50.3%

Female 35.1%

7.1 Demographics 118

The Federal Democratic Republic of Ethiopia is the largest country on the
Horn of Africa. Ethiopia is a mountainous country with a high central
plateau cut in half by the Great Rift Valley. A map of Ethiopia can be seen
in figure 7.1. Ethiopia is an ethnically diverse country with more than 80
different ethnic groups speaking 84 indigenous languages. It is also one of
the worlds poorest nations, with around half the population living under
the poverty line. The infrastructure of Ethiopia is poorly developed.

Ethiopia is a country with long history and was the home of the Axumite
kingdom. The Axumite kingdom was technically advanced for its time.
Ethiopia has developed its own script, the Ge’ez script, and its own written
languages. The name Ge’ez come from an ancient language now only used
in the liturgy of the Ethiopian Orthodox church. Ge’ez also refers to the
script used to write Amharic and other languages in Ethiopia. In Ethiopia
this script is called Fidel.

Ethiopia uses its own calendar system. The Ethiopian calendar is similar
to the Julian calendar used in eastern orthodox churches, but with the sig-
nificant difference that it has 13 months. The first 12 month have 30 days
and the last month have 5 days in regular years and 6 in leap years. Thus
the length of the year is the same as in the Julian calendar, which have 12
months of irregular sizes (30, 31 or (28/29)). The Oromo people have yet
another calendar.

All the population related data are uncertain. A census have not been made
since 1994. The current size of the population and the percentage of dif-
ferent ethnic groups and religion are all estimates. The percentage of the
different ethnic groups and religions are politically sensitive and therefore
it is reason to be critical to the estimates.

The Oromo and the Amhara people are the two domination ethnic groups
in Ethiopia and the Tigrayan people are mostly living in Tigray, where I
worked. According to the CIA World Fact Book 40% belonging to the
Oromo people, 32% belonging to the Amhara and Tigrayan people. Ac-
cording to the 1994 census 32.1% identified themselves as Oromo, 30.2%
identified themselves as Amhara and 6.2% identified themselves as Tigrayan.
I have also found a survey from 2005 which focused on demographics and
health ((Director) 2005). This survey was made on a representative sam-
ple of 14 645 household all over Ethiopia. 14070 women and 6033 men
responded to this survey. From the respondents to this survey 32.6% be-
longed to the Oromo people, 31.3% belonged to the Amhara people and
6.8% belonged to the Tigrayan people.

When it comes to the religious affiliation the difference between the World
Fact Book on one side and the 1994 census and the demographics and

7.2 Ethiopia, a Land of History 119

health survey on the other is even bigger. The CIA World fact book says
there are 45%-50% Muslims, 35%-40% Ethiopian Orthodox, 12% animists
(traditional) and 3%-8% others. The 1994 survey says there are a total of
61.6% Christians (50.6% Orthodox, 10.1% Protestant and 0.9% Catholic),
32.8% Muslims and 5.6% traditional. The survey says a total of 68.7%
Christians (49.2% Orthodox, 18.3% Protestant and 1.1% Catholic), 28.8%
Muslims and 2.4% others.

My point in listing this variations of the presumed percentage of ethnic
groups and religious affiliation is to show how uncertain data from a poor
country like Ethiopia is. It seams, however, that the CIA World Fact Book
is way of in its estimates. I find this a little disturbing because I thought the
Fact Book to be more accurate. The CIA World Fact Book have frequently
been cited in papers I have read.

The infrastructure is poorly developed only 13.4% of the population have
access to electricity and only 6.1% of the households are electricity cus-
tomers. Tigray region have better electricity supply than most of Ethiopia.
The road density in Tigray is in the vicinity of the national average. Tigray
is a mountainous region where it is expensive to build roads.

The official language of the federal state is Amharic. The official language
of the regions is decided by the respective region. The language of instruc-
tion in the primary school (grade 1 to 8) are decided by the region. After
grate eight the language of instruction in schools is English. The enrolment
rate is very low with little over half of the children in school age being en-
rolled.

The economy of Ethiopia is based on agriculture, which accounts for half of
the GDP, 90% of exports and 80% of total employment. Coffee is the major
export crop providing for 65%-75% of Ethiopia’s foreign exchange earn-
ings. Ethiopia experience periodic droughts. In 1984-85 there were severe
famine in Ethiopia caused by drought and political instability. Currently
there are drought in the Horn of Africa, but this have not lead to a famine
in Ethiopia yet. The rainy season is from mid-June until mid-September.
Ethiopia was ranked by the UN to be the 170th of 177 countries measured
by Human Development Index (HDI) in 2005. HDI is a measurement aspiring
to measure the quality of life according to health, knowledge and wealth.

7.2 Ethiopia, a Land of History

Current day Ethiopia has a long historical heritage. The Ethiopian civili-
sation has had many different names and expanded areas in modern day

7.2 Ethiopia, a Land of History 120

Sudan, Yemen, Djibouti, Eritrea, Ethiopia and Somalia. The first records of
Ethiopia stems from Egyptian traders and dates from 3000BC. The state of
Sheba is believed by some to has been located in Ethiopia, but the location
is disputed between Yemen, Ethiopia or both. From the 19th century up
until after World War II Ethiopia was called Abyssinia. The information for
this historical summary I have got from the English Wikipedia.

The first verifiable kingdom of great power to rise in Ethiopia was the king-
dom of Axum. Axum grew from 5th century BC to become a important
trading nation by 1st century AD. The capital was in the city of Axum.
Christianity was introduced into the country in 330AD by Frumentius. The
Greek boy Frumentius was taken captive and sent to the King of Axum as
slave where he gained favor with the court. The Axumite kingdom lasted
until 11th or 12th century when it was succeeded by the Zagwe dynasty.

Yekuno Amlak overthrew the last Zagwe king in 1270 and introduced the
Solomonid dynasty. He claimed ancestry from the last king of Axum. The
Solomonid dynasty claims decent from king Solomon and the Queen of
Sheba, who is said to have given birth to the traditional first king Menelik
I after her Biblically-described visit to Solomon in Jerusalem. This dynasty
lasted until 1974 when the last emperor, Haile Selassie, was deposed.

Towards the close of the 15th century the Portuguese missions into Ethiopia
began. A belief had long prevailed in Europe of the existence of a Chris-
tian kingdom in the far east, whose monarch was known as Prester John,
and various expeditions had been sent in quest of it. Among the explor-
ers who had engaged in this search was Pedro de Covilham, who arrived
in Ethiopia in 1490, and, believing that he had at length reached the far-
famed kingdom, presented to the emperor of the country, a letter from his
master the king of Portugal, addressed to Prester John. This relation would
prove helpful when the Somali General and Imam, Ahmad ibn Ibrihim al-
Ghazi, attacked Ethiopia from 1528 until he was defeated in 1543. Portugal
sent 400 musketeers to aid the Ethiopian emperor.

Ethiopia remained independent during the Scramble for Africa and are the
only country in Africa which has never been colonised. Ethiopia was,
however, not unaffected by the Scramble for Africa. Menelik II, emperor of
Ethiopia from 1889 to 1913, exchanged the region Eritrea in 1889 for rifles,
ammunition and cannons with Italy. This agreement was disputed. The
Italian version of the treaty said that Ethiopia had become an Italian protec-
torate, but the Amharic version said that Ethiopia had become an extended
partner with Italy under Menelik II's full authority. This conflict came to
head with the Battle of Adowa in 1896 where the Italians were defeated.

In 1930 the last emperor in the Solomonid dynasty Haile Selassie came to

7.2 Ethiopia, a Land of History 121

power. His reign was interrupted between 1936 and 1941 when Ethiopia
was under Italian occupation. When Selassie returned to power he started
on a program of modernisation. He improved diplomatic ties with the US,
and sought to improve the nations’ relationship with other African nations.
Selassie’s rule ended when he was deposed in 1974 after a period civil un-
rest. A provisional administrative council of soldiers, known as the Derg
(“committee”) seized power.

Mengistu Haile Mariam assumed power as head of state and Derg chair-
man, after having his two predecessors killed. Mengistu’s years in office
were marked by a totalitarian-style government and the country’s massive
militarization, financed by the Soviet Union and the Eastern Bloc, and as-
sisted by Cuba. The Derg proclaimed itself to be socialist, and gradually it
turned Ethiopia into a communist country. In 1984 it formed the Workers’
Party of Ethiopia (WPE). In 1987 a new Soviet-style civilian constitution was
introduced and Mengistu became president.

During the reign of Haile Selassie sentiments had stirred in Tigray. Many
of the Tigre people felt that they were being treated unfairly by the cen-
tral government. This eventually lead to the formation of Tigrayan Peo-
ples” Liberation Front (TPLF) in the first half of the 1970s. TPLF continued
the struggle against the central government during the Mengistu regime.
TPLF had ties of cooperation with Eritrean People’s Liberation Front (EPLF)
dating from even before the formation of TPLE. EPLF gave military train-
ing to TPLF during the time of TPLF’s formation. In the 1980s, TPLF had
a reputation as hard-line communists who saw Enver Hoxha’s Albania as
a model state. Observers used to joke that when TPLF took control over a
town it would take down the portraits of Marx, Engels and Lenin in gov-
ernment offices, and replaced them with even larger ones. In 1989, the
Tigrayan Peoples’ Liberation Front (TPLF) merged with other ethnically-
based opposition movements to form the Ethiopian Peoples” Revolutionary
Democratic Front (EPRDF). In this process TPLF abandoned a secessionist
agenda and the former hard core Stalinist ideology (Berhe 2004). In May
1991, EPRDF forces advanced on Addis Ababa. Mengistu fled the country
and was granted asylum in Zimbabwe, where he still resides.

A transitional government was formed by EPRDF and Meles Zenawi, from
TPLF, was appointed President. Most opposition groups boycotted the
election held in 1995, ensuring EPRDF a land slide victory and giving Meles
Zenawi the position of Prime Minister. EPRDF retained majority in 2005
general election, but lost many seats to the opposition. Meles Zenawi is
still in office.

TPLF’s former allies EPLF took control of the province of Eritrea, the north-
ernmost part of Ethiopia, and formed the state of Eritrea in 1993. Even if

7.3 Politics 122

this made Ethiopia a land locked nation, the independence of Eritrea was
recognised by the transitional government of Ethiopia. The border was,
however, un-demarcated. In 1998 border disputed lead to the Eritrean-
Ethiopian War which ended in 2000. The relationship between Ethiopia and
Eritrea is still tense and the border dispute is still not settled.

7.3 Politics

Ethiopia is governed as a federal parliamentary republic. The federation
consist of 9 semi-autonomous regions, divided according to ethnicity, and
two city regions. The regions have power to raise and spend their own rev-
enues. The parliament have two chambers; House of People’s Representatives
(the lower chamber) with 547 members and House of the Federation (the up-
per chamber) with 110 member. The presidency acts as head of state and is
elected by the House of People’s Representatives and House of the Federa-
tion for a six-year term, but have little political power. The prime minister
is chosen by the majority group in the House of People’s Representatives.
The Council of Ministers is selected by the prime minister and approved
by the House of People’s Representatives.

The political system in Ethiopia is divided into an executive, legislative and
judicial branch. The executive branch is the president, prime minister and
the council of ministers. Most political power is held by the prime minister.
The legislative branch is the parliament. The judicial branch is more or
less independent. The president and vice president of the Federal Supreme
Court are recommended by the prime minister and appointed by the House
of People’s Representatives; for other federal judges, the prime minister
submits candidates selected by the Federal Judicial Administrative Council
to the House of People’s Representatives for appointment.

An important and disputed characteristic of the current political system
in Ethiopia is the federal system, with regions drawn according to ethnic
lines. The constitution even give the right of secession to any nationality
within Ethiopia. This is not surprising considering that TPLF started out
as a secessionist movement and joined forces with other ethnically based
movements. At blog sites such as blogspot.com many posters express con-
cern about ethnic division in Ethiopia and some accuses Meles Zenawi for
using divide and conquer strategies.

The regions in Ethiopia are semi-autonomous. Each region have a Regional
State Council which is elected by popular vote. The election for the House
of People’s Representatives in the federal parliament is held every five

7.4 ICT in Ethiopia 123

years. The election of the regional councils are conducted by the respec-
tive region. The members of the House of the Federation are elected by the
regional councils, and is chosen for a 5 year term. The current regions in
Ethiopia are the following including two charter cities:

¢ Addis Ababa (charter city)

e Afar

¢ Amhara

¢ Benishangul-Gumaz

¢ Dire Dawa (charter city)

¢ Gambela

¢ Harari

¢ Oromia

¢ Somali

¢ Southern Nations, Nationalities, and Peoples Region

e Tigray
In the 2005 election EPRDF got the majority votes and holds 327 of the 547
seats in the House of People’s Representatives. The two major opposition
groups Coalition for Unity and Democracy (CUD) and United Ethiopian Demo-
cratic Forces (UEDF) got 109 seats and 52 seats respectively. Allegation of
election fraud were raised by the opposition. Unrest stirred up in Addis
Ababa in protest against the alleged fraud. The government cracked down

hard on the protesters, leading to close to hundred deaths and several hun-
dreds arrests.

7.4 ICT in Ethiopia

In this section I will explore the current state of ICT in Ethiopia, and the
plans and aspiration the government have for the future. The Ethiopian
government aspire to leapfrog Ethiopia into the information age. Ethiopia
is too poor not to make use of ICT it is said. There is a noticeable aspiration
in the African continent to leapfrog the continent into the information age.
This can be seen by the quite rapid building of mobile phone networks,
bypassing the fixed line telephone technology.

7.4 ICT in Ethiopia 124

It is true that the current telecommunication infrastructure is poorly devel-
oped. Few have a telephone in their house, in 2003 there was only 435,000
main telephone lines in Ethiopia according to the World Fact Book. The
number of mobile phone subscribers was only 178,000 in 2004. Report has
it that the number of mobile users are increasing rapidly. The state owned
Ethiopian Telecommunications Corporation (ETC) are increasing the capacity
of the mobile network, and according to The Reporter the number of mobile
subscribers has increased to 510,000. This is still few even by African stan-
dards, however. To rectify this the current government in Ethiopia have
grand visions.

In a presentation about e-readiness (Docktor) a number of African coun-
tries are measured according different indicators for e-readiness. This pre-
sentation uses a five point scale for measuring the level of e-readiness for
each of the indicators: Low, Low-Medium, Medium, Medium-High and
High. Here I present some of the results for Ethiopia.

PC penetration Low
Bandwidth Low-Medium
Government web pages Medium
Secured servers Low

Gross enrollment ration in education Low

IT students in tertiary education Medium-High
High tech exports Low

According to an article at Guardian Unlimited, Ethiopia is using 10% of
it's GDP every year on ICT. The government plans to invest more than
$100 million on pubic sector computing in the next five years. The article is
based on an interview with, among others, Ethiopia’s prime minister Meles
Zenawi. In the article Meles is cited to say (Cross 2005):

I want to see ICT pervade all our activities as a government, not
just in the urban areas. We want to connect all our villages in
two to three years. All education services, likewise. We would
also like to provide a bit of tele-medicine.

4,000km of optical fiber lines has already been laid out, this lines con-
nects all the regional states in Ethiopia. It is planned that by 2007 none
in Ethiopia will live more than a few kilometers from a broadband access
point. This network are going to support two major ICT initiatives, School-
net (http://www.schoolnet.et/) and WeredaNet.

Schoolnet is an education network which would provide more than 450 sec-
ondary educational institutions with access to general ICT, e- mail, and the

http://www.schoolnet.et/

7.4 ICT in Ethiopia 125

WWW. It would allow these institutions to receive streamed Internet- and
broadcast TV-based educational content from media agencies. The hope
is that this will improve the quality of education and help to overcome
Ethiopia shortage of qualified teachers. Some schools already receive video
lessons broadcast for eight hours a day by satellite TV.

WeredaNet connects 600 Weredas to 11 regional capitals. This network
supports IP telephony and video conferencing, in addition to more tradi-
tional Internet traffic like WWW and e-mail. Half of the links is by cable
and half by satellite connection. The hope is that this will improve public
service. Previously official reports could take months to reach the capi-
tal. This network was mobilised to train officials for the general election
in May 2005. A web site showing the result of the election is available at
http://www.electionsethiopia.org/.

There are also plans to connect 30 research and operational agricultural cen-
ters and to connect all major referral hospitals to form the basis of a national
telemedicine infrastructure. Through this grand plan for the improvement
of Ethiopia’s ICT infrastructure the Ethiopian government hopes to leapfrog
Ethiopia into the information age. Ethiopia do not have any significant
legacy systems to worry about and can apply modern telecommunication,
multimedia and data transfer technologies.

To implement this grand vision Ethiopia, ETC and the ministry of Capac-
ity Building have signed contracts with several companies. The previously
mentioned 4,000km of fiber lines have been built by Alcatel, China Inter-
national Telecommunication Construction Corporation (CITCC) and Siemens.
This lines have been laid to support mobile and fixed telephone users, and
for data traffic. The plan is to lay more than 10,000km of fiber optics lines

A more data traffic related project have been implemented by a South-
African company called Business Connexion. Business Connexion is a Cisco
gold partner. Using Cisco technology a data network with it’s core in Ad-
dis Ababa have been made. This network consist of a 16-node fiber optic
ring around key sites in Addis Ababa. Using combination of telephone car-
riers, microwave links and satellite links this network is connected with all
the Wereda offices in Ethiopia. This network are designed to handle mul-
timedia and data traffic. For data traffic this network will have a carrying
capacity of approximately 100,000 Internet customers and provide for 2 000
dedicated lines by Asymmetrical Digital Subsciber Line (ADSL), Fixed Wireless
Access (FWA) or optical fiber with metro Ethernet connection.

To further boost the development of ICT in Ethiopia support have come
through a Technology, Entertainment and Design (TED) Prize. TED is an an-
nual US event. This prize was awarded to Bono from the music band U2 in

http://www.electionsethiopia.org/

7.4 ICT in Ethiopia 126

2005. One of the three wishes to be awarded him was to connect every hos-
pital, health clinic and school in Ethiopia to the Internet. Advanced Micro
Devices (AMD) is one company that as stepped up to fulfill, at least parts,
of this wish.

Ethiopia is currently not connected to the Internet backbone, but all inter-
national Internet traffic is routed via an US satellite ISP operator. By using
a program called t r acer out e I have done a little research on how pack-
ets going into Ethiopia is routed. I found that IP packets from Norway to
Ethiopia (www.ethionet.et) is routed via Intelsat. Intelsat is an international
satellite communication operator. The IP packages are routed to the US
and from there to the UK where the package enters Intelsat’s network and
is sent by satellite to Germany and from Germany to Ethiopia by satellite.
The response time from Ethiopia is significant, between 600 and 700ms. I
have tried to find the bandwidth of Ethiopia’s connection to the interna-
tional Internet. The most resent data I could find is from 2002. Then the
bandwidth was 10Mbps for incoming traffic and 4Mbps for outgoing, for
the whole country.

Even if the internal network in Ethiopia have improved significantly over
the last few years it would be of little help to Internet connectivity if the
connection to the broader Internet is as low as 10Mbps. To give more
bandwidth to the Internet a different solution than a satellite connection
is needed. Currently there are plans to connect to a fiber optic line go-
ing through the Red Sea and Gulf of Aden, this line is called East African
Submarine Cable System (EASSy). Ethiopia, however, is a land locked na-
tion and have to make deals with it’s neighboring countries. Eritrea is
not an option given the resent violent history and troublesome dealings
with that country. According to the Ethiopian newspaper The Reporter the
Ethiopian government have reached and understanding with Djibouti and
Sudan, and the plan is to have a connection both through Djibouti and Port
Sudan. When this have been realised Ethiopia have truly joined the inter-
national virtual community. Such progress, however, are only available to
the elite in developing countries. When even using Internet Cafes is too ex-
pensive for the majority of the population, not to mention the knowledge
level required to use computers, the benefit of Internet is inaccessible to
most people.

The New Partnership for Africa’s Development (NEPAD)(http://www.nepad.org/)
have a project called the E-school project. It was first announced in 2003
and aims at connecting schools across Africa to the NEPAD e-school net-
work and the Internet. According to a new bulletin at nepads web site the
project target is to connect all high schools within five years and all schools
within ten years. Around 600 000 schools need to be connected to reach this

www.ethionet.et
http://www.nepad.org/

7.4 ICT in Ethiopia 127

target. This project have attracted support from heavy software and hard-
ware giants like HP, Microsoft Corporation, satellite operator INMARSAT
Limited, Oracle Corporation and Cisco Systems. This corporations are the
private sector partners that lead the consortium for the NEPAD e-school
demonstration program. The influence of such heavy industry partners
will properly give proprietary software a dominating position in this e-
school network. The e-school project will influence Ethiopia’s SchoolNet
project.

The more practical side of this story is what I experienced while I was in
Ethiopia. In Addis Ababa I saw many Internet Cafes and small software
shops. There were even some small private computer schools. The network
at AAU and everywhere else I was in Ethiopia, were slow and severely con-
gested. At AAU the network was only usable in the evenings. In Mekelle
the network was always slow and frequently unavailable at the Internet
cafe we used. The service seemed more reliable when we connected from
Tigray Health Bureau and from Mekelle university, but the connection was
significantly slower than in Addis Ababa.

In Addis Ababa the network was more reliable, but was severely congested.
At AAU the network was so congested that it was effectively useless in nor-
mal working hours. In the evenings the situation was better. After I came
back from my first visit to Mekelle moved from the university guest house
to a guest house run by a Norwegian mission agency (Norsk Luthersk Mis-
jonssamband (NLM)). There was one computer at NLM guest house con-
nected to the Internet, this connection was faster than the one at AAU in
normal working hours.

The AAU network had an extremely strict firewall for both inbound and
outbound traffic. The only access to the Internet was through a http proxy,
all other communication ports was closed. To get access to the http proxy
you had to have a user name and password provided to you by AAU. The
communication port for http is port 80, services using other ports was not
available. I tried to use other services through the http proxy without avail.
If this was not enough AAU also had a web filter filtering out “inappropri-
ate” web pages. Some perfectly legitimate (no porn) web pages in Norwe-
gian was blocked by this filter. I disdain porn so I wouldn’t mind actual
porn being filtered, but it is better with a little porn getting through than
legitimate pages getting filtered. At the NLM guest house I had no such
problems. More concerning than the filtering of porn is filtering of web
content critical of the Ethiopian government. The Ethiopian government is

accused of filtering out critical weblogs at blogspot.com.

http://ww.worldpress.org/2373.cfm

http://www.worldpress.org/2373.cfm

7.4 ICT in Ethiopia 128

Hed
Sea

Sudan Eritrea

Yemen
/

Aksum
"Mekel
Gﬂll'lder Tlgrw

r Afar Golf of
Lake Lalibela Djibouti Aden

T
ana Amhara

Ethiopia / Harars \ Somalia
Hddisnhaha

Benshangul

Gambella Oromia]
Somali
Southern

Peoples'

Somalia

>

Figure 7.1: Map of Ethiopia

Chapter 8

The HISP project in Ethiopia

In this chapter I will give an account of my experiences from working in
Tigray. Our team were assigned to the health authorities in Tigray. Ethiopia
had previously expressed interest in testing DHIS and five regions were
selected as pilot sites. The five regions were Addis Ababa, Amhara, Ben-
shangul, Oromiya and Tigray. Tigray is located north in Ethiopia, at the
border to Eritrea. As previously mentioned it is from this region the upris-
ing that overthrew the old communist regime grew. Because of this Tigray
have much power in the current government. It is in this region the border
war between Eritrea and Ethiopia took place.

In total I spent just under four month in Ethiopia. As I have FLOSS as the
main subject for my thesis I am going to interpret my experience in the light
of FLOSS. My work in Ethiopia was not to ask people about FLOSS and
what they knew about it, but to participate in an ongoing FLOSS project,
namely Health Information System Program in Ethiopia (HISP-ET). I have made
no formal interview, but where relevant I will refer to conversation I have
had with people in Ethiopia.

As my experience from the field work in Tigray consist of a multitude of sit-
uations, words, sights and impressions I am going to choose some themes
to use as a skeleton to hang my experiences on. FLOSS is the theme of my
masters thesis, so this is one part of the skeleton. My work in Tigray is
related to FLOSS in the sense that the software we installed is FLOSS, and
that I participated in adapting this software to the needs in Tigray. I will
start with some facts about Tigray.

8.1 Tigray Demographics 130

8.1 Tigray Demographics

Tigray region

Regional capital Mekelle
Official Language Tigrinya
President of the Executive Committee | Tsegay Berhe
Population 2005 est. 4.4 mill

Area est. 80,000km?
Religion 1994 census

Christian 96%

Muslim 4%

Ethnic groups 1994 census

Tigrinyan 95%

Ambhara 2.6%

About 83% of the population are farmers. Teff, wheat, and barely are the
main crops. Teff is used to make the ubiquitous traditional Ethiopian bread
injera. Centuries of erosion, deforestation and overgrazing have left the
region with dry and treeless plains, hills and plateaus. Tigray is mountain-
ous, elevation of the region rises from 600-2,700 above sea level, and is one
of the richest areas in Ethiopia in mineral resources. A map of Tigray can
be seen in figure 8.1.

The Tigray region hold many historical sites. Tigray hold Axum, the seat of
the ancient Axumite kingdom. In Axum there is a park of obelisks or Steles
dating from as early as the 2nd century BC. Another distinctive feature of
Tigray is its rock-hewn churches. This churches are hewn straight out of
bare rock. I found it very interesting to hear that the Ark of the Covenant
is said to have been brought from the Temple in Jerusalem to Axum. It is
said that the son of the Queen of Sheba and Solomon, Menelik, was born in
Ethiopia and later lived in Jerusalem. After one year in Jerusalem he was
sent back and some of the men sent with him took the Ark of the Covenant.
This was brought to Axum where it is to this day, in a chapel guarded by a
priest. Only the guardian is allowed to see the ark.

8.2 The Tigray team

I was appointed by Jern Braa to adapt DHIS to the needs of the Tigray
region. In this endeavor I was part of a team with four members. The
members were; Solomon, Hirut, Netsanet and myself. All the members of
the team except me were Ethiopian nationals. In this section I will give an
account of our doings in this region.

8.2 The Tigray team 131

e ! rainal mn
2003 Emargen cies Linit far Ethiopis

Figure 8.1: Map of Tigray

I came to Ethiopia on Tuesday 6th of July 2004. I came with a open mid, you
could say, because I didn’t have a very clear idea of what I was supposed to
do in Ethiopia. I knew that I was supposed to work with a health statistical
system called DHIS, and that I was assigned to a region in Ethiopia called
Tigray. At the airport I met Solomon Bishaw, which was the leader of the
Tigray team. The other members of the team, Hirut and Netsanet I met
later on.

During my first month in Ethiopia we did not do much. Solomon had al-
ready been to Mekelle twice before I came. Mekelle is the regional capital of
Tigray in which the administrative authority of the health sector in Tigray
is situated, the Tigray Health Bureau. He had some sparse contact with the
head of the bureau, Theodros, after the first visits, and the agreement was
that we should come to start the process of adapting DHIS to the needs of
Tigray. Solomon prepared a document on what we were planing to do in
Tigray, which he sendt by e-mail.

I, for my part, spend the first month on adjusting my self to Ethiopia on
many different levels. I lived in unfamiliar surroundings and in a way I
was like a child again and had to learn basic skills from the ground. I will

8.2 The Tigray team

132

We talked to bureau representatives
and agree on:

- The bureau will establish a team in
order to make a proposal on dataelem.
and reports to include in DHIS

Hirut and Netsanet inserts the
organisation hierarchy and the
data elements, while | designs
the reports and insert some
more data elements.

We conduct training at the
regional bureau and the two
pilot sites. In addition | talked
to the departments at the
bureau about reporting format,
as the reporting format made
by the team where not well
thought through. In addition |

July 6 2004: icati i

| y. in Ethiopia — - Two districts will become pilot districts: Ln‘;ade a_Ja;_a application to _madfe some adaption ofdthe us;”
arr!ve in iopia Wukro and Hintalo-Wajirat elp me in this process. interface, to cater user demands.

Addis Ababa

A A A

A

y ¢

\J \ \J
July 26 2004: August 25 2004: October 2 2004: | | October 232004 [November 1 2004:
We arrive in Mekelle | am back in Addis Back in Mekelle | |Backin Addis | leave Ethiopia
Ababa Ababa

Figure 8.2: What I did in Ethiopia

tell more about this in section number 8.7. As I did not know the DHIS
software well, I used this month to learn this software better. Most of my
time, however, was spent on familiarising myself with the new surround-
ing. Everything took time, from buying food to get a visa for the whole
four months I was going to stay there.

On Monday the 26th of August we arrived in Mekelle by air. The day after
we went to the regional health bureau. We had some previous contact by e-
mail and we expected them to be aware of our arrival, but when we came to
the bureau there was a sense of confusion. There seemed to me that there
had been some shortcoming in the preparation for our visit. The bureau
head was not present and there didn’t seem to be anybody there that knew
about our initiative.

We had four subject we wanted to discuss with the bureau.

1. The importance of a minimal dataset (EDS).
2. The making of a team to establish this data set.
3. Which district that should be a part of the pilot phase of the project.

4. Which resources the bureau could make available to us.

There were a lot of asking around. First we visited a team leader in the
Health Management Information Systems (HMIS) unit. Most of the discus-
sions were held in Amharic because we decided that it would be better if
the bureau staff could express themselves in a language familiar to them. I

8.2 The Tigray team 133

don’t speak Amharic, so something might have been lost in translation, but
from what I could understand from the translation Netsanet gave to me, he
was skeptic of our initiative. He said he did not have authority to decide
on what we asked for.

Therefore we were lead to an other office, were we met the head of the
Evaluation and Surveillance unit. We discussed our plans with him and
the team leader in HMIS. They expressed concern about the coming of the
Ethiopian new year. They had to finish the yearly report for Tigray, and
were therefore rather busy. They thought that it would be better if we came
back in September. We had limited time in Ethiopia and could not agree to
that. They said that they had been working on a minimal data set which
they had sent to the federal authorities for approval. In September the data
set would be available. It was decided that we could collect data from their
existing computer based health statistical system (See section 8.3). So we
spent the rest of the day collecting data from different departments.

From our visit to the different departments we understood that there was a
lot of double reporting. Many of the departments in the bureau had its own
reports they expected the district to fill inn. The same data was reported
multiple times to different departments. There was already at this time
a sense of distrust between the Decease Prevention and Control department
(DPC) and HMIS. The DPC used exclusively their own reports.

It was later decided that we could visit two districts, or as they call them in
Ethiopia; weredas. The two districts were Wukro and Hintalo-Wajirat. On
the Thursday 29th of July the others on the team went to Hintalo-Wajirat.
I stayed behind that day because I had an acing stomach. From what the
others told I understood that there was some use of information in the dis-
trict. They made a list of the ten most common deceases and bought in
medicines accordingly.

The next day we traveled to Wukro. This time I felt well enough to come
along. We found a mini-buss going to Wukro. The road there had recently
been paved and parts of it was still under construction. The construction
was done by a Chines firm. According to Solomon there was just a mud
road there the last time he was there. It seems that at least some progress
are being made in Ethiopia.

After an hour we came to the district health administration. The adminis-
trations facilities were good according to Ethiopian standard. We met the
head of the administration. The conversation where conducted in Amharic,
which left me out. I will give some main points to the conversation as trans-
lated to me.

8.2 The Tigray team 134

He claimed to be interested in using information for the administration of
the districts health sector. The tour he gave us at the administrations facil-
ities confirmed this. We saw a lot of hand made charts and tables. They
had made the charts and tables based on raw data and indicators. This
show that you don’t need computers to manage information. Computers,
however, makes it easier (with the right software) to make meaningful in-
formation out of raw data, and give better protection against errors in the
raw data.

They had some computers at the administration, but they were not used
much, except that they used Epi-info to type in information about out-
patients. They had one man hired as a computer clerk, but the head was not
very pleased with him. The computer clerk had some training in Epi-info,
but he found it difficult to use. He also had some beginners training in Java.
The next time we came to Wukro, over one month later, I gave him Eclipse
and a Sun JDK. We visited the man responsible for the malaria office. He
showed us the different reports that the clinics, community workers and
hospitals had to fill inn. A community worker are responsible for a variety
of tasks in a geographical unit like a village. They are not health workers,
but register information about malaria.

After lunch we went to visit the district hospital. There we met the com-
puter clerk from the administration. He introduced us to a lady who was
responsible for data collection at the hospital. She had no education for the
work, but she had work experience. The data collection at the hospital was
exclusively paper based. The lady had a computer installed in her office
a couple of weeks back, but she had not started using it. She had no com-
puter experience and the computer only contained Epi-info, which requires
computer knowledge beyond the “point and click” level.

The next week I struggled a lot with my stomach and eventually had to go
to a clinic to get subscription for some antibiotics. This effectively hindered
me to do much work that week. On Monday we spoke to the team leader
in HIMS again. He expressed even more of his skepticism. He thought that
we, as students, were only interested in our paper and that our initiative
would not be sustainable. He didn’t want to help us. The next day the
others on my team got to speak to the head of the planning department,
as I laid in bead with fever. The head of the planning department was
much more positive to our initiative. We made an agreement to demon-
strate DHIS for the bureau.

On Thursday I felt well enough to participate in the negotiation with the
bureau. This day we finally had a chance with speak to the head of the
bureau. He sowed himself to be very courteous, and spoke good English.
Because of this we held the meeting in English. We explained what DHIS is

8.2 The Tigray team 135

and the philosophy behind HISP. He mentioned many of the problems we
had noticed. There was a lack of coordination between the departments.
Because of this the information flow was like spaghetti. DPC department
mistrusted HMIS for managing information. He mentioned that the bureau
had a big reporting burden. They had to fill inn many forms for both the
federal authorities and NGOs. He mentioned a need for a minimal dataset
at the federal level, but he didn’t expect that a minimal dataset would be
agreed upon for quite some time. He asked us for a milestone plan for our
initiative.

The time after our meeting with the bureau head was hectic. We got some
problems importing data from epi-info. We decided to convert the datafile
format used in epi-info into the format used by DHIS’s import/export sys-
tem. Both are purely text based formats. Solomon used MS Access for this
purpose, but didn’t manage to import the resulting datafile into DHIS. I,
on the other hand, made a python script to automate the conversion. At
first I didn’t mange to import the file, but when I changed the separation
character (the character used to separate columns in the import file) from
comma to semicolon it worked. There was an issue with the localisation
setting in MS Windows. Different locales use different separation character
and this influenced MS Access.

The plan was to present our system on Friday next week. Solomon worked
on the milestone plan that the bureau head requested and on the presenta-
tion. Hirut typed in the organisational hierarchy for the regional level and
for the two districts we planned to use as pilot sites. I worked on import-
ing data and making a presentation of the software. Before Friday Solomon
got news about Sundeep Sahay being in Ethiopia. Sundeep is a professor
at the University of Oslo and have long experience from HISP in India. He
could not come to Mekelle before Saturday. Therefore we asked the bu-
reau to postpone the presentation until Monday next week. Sundeep was
a great asset in editing the milestone plan and for the presentation we held
at the bureau. It gave our initiative more credibility to have an experienced
professor compared to only three master students and a PhD student.

At Monday 16th of August we gave a presentation of HISP for the bureau.
The meeting was held at the bureau head’s office. There were many people
there. The head had obviously called many leaders at different level in
the bureau to the meeting. First Sundeep presented HISP with examples
from India. Then I demonstrated the functionality of DHIS, based on the
data we had imported from epi-info. Solomon closed our presentation by
presenting our milestone plan.

After our presentation there were a lot of questions. One question related
to whether DHIS had support for capturing community data, not just data

8.2 The Tigray team 136

about people visiting health facilities. Sundeep answered that DHIS was
not well suited for that kind of application. DHIS is designed for the pri-
mary health sector, with clinics, health centers and hospitals etc. There
were also some questions about how DHIS did data validation, to answer
this I demonstrated some data validation support in DHIS.

Two days later the answer to our proposal came. They had approved it. A
team was set from members of the bureau to decide on data elements and
report formats. The mandate of the team was to make a proposal on the
data elements and reports to be included in DHIS. This proposal was then
submitted to a group consisting of leaders from different departments who
finally approved the data elements and report formats. Hirut and Netsanet
agreed to be our representative during this process. Solomon went back to
Addis Ababa because he was soon to go to England for some lectures there.
The next week I went back to Addis Ababa too.

I spent a little over one month in Addis Ababa. This time was an important
time for me personally, I met a lot of interesting people. In connection
with the HISP project we had one tasks; adapt DHIS to support the data
elements and reports the bureau team decided on. In other words we could
now start the coding related task of the project. Hirut and Netsanet came
back to Addis Ababa a little less than two weeks later. They had the data
elements and the report formats with them. The details of this work is
described in section 8.4.

The 2nd of October Hirut, Netsanet and I came back to Mekelle. This time
we had Kalkedan with us. Kalkedan was hired by the HISP Ethiopia project
to take care of the work in Tigray after we left. Kalkedan’s responsibility
would be to give support for DHIS to the health bureau. Kalkedan had
some basic computer education from Mekelle University, where he had
learned C++ and some VBA and the MS Office suite.

Our plan for this visit was to install the software and conduct training at
the bureau and our two pilot districts. As mentioned in section 8.4 the
report formats given us by the bureau was not well suited to be used in
a computer based system like DHIS. Therefor one of my tasks was to go
to the different departments in the bureau to get a better understanding of
what they wanted their reports to contain.

The first week we conducted training at the bureau. The first couple of days
we talked to different leaders at the bureau, among others the new bureau
head. The former head had become a State Minister of Health. The former
head of the planning department had stepped into his place. We also dis-
cussed with the head of HMIS on how to conduct the training. Because we
were only able to make the extended version of DHIS made by Woinshet to

8.2 The Tigray team 137

run with the XP version of MS Access there were some issues. The bureau
had MS Office 2000 as a standard and was reluctant to install MS Office XP.
For training purposes we agreed to install MS Office XP and DHIS on three
computers.

The next week Kalkedan and I stayed at the bureau to finish the training
while Hirut and Netsanet conducted training in the pilot districts. They
first spent the Monday and Tuesday in Hintalo-Wajirat and then the Wednes-
day in Wukro. Kalkedan and I continued the training until Wednesday at
the bureau, and at the same time we talked to people at the bureau about
report formats. We finished the training at the bureau with a test that was
well received. My goal with the test was not to test what the individual
clerk knew, but to let them in cooperation use a broad range of impor-
tant functionality offered by DHIS. It tested data input and validation, im-
port/export, making reports and doing data analysis.

Because Hirut and Netsanet left Mekelle after Wednesday, Kalkedan and I
had to finish the training in Wukro. So on Thursday we drove to Wukro,
this time the bureau had given us a car and a driver. That day there was
only one man that participated in the training. It was the computer clerk I
met last time we were in Wukro. We used a modified version of the test we
gave at the bureau. The computer clerk expressed approval for DHIS, es-
pecially that data input was done through one interface. Unlike the current
system with Epi-info and multiple paper based reports.

All the training material we used at the bureau I had to make myself. I
tried to find some training material on the Internet without avail. During
the training sessions at the bureau the trainees where divided into groups
of two to three people, each group had access to one computer with DHIS
installed. At the first day of the training I planned to use a projector to
demonstrate the basic use cases. The HMIS unit head said that they pre-
ferred to experiment with the software themselves, so that is what we did.
The groups tried to perform the basic use cases while we answered ques-
tions and guided them when necessary.

The next week Kalkedan and I continued the work on the reports. In con-
nection with this I showed Kalkedan how to make reports, so he could
design report for the bureau when I had left. Our visits to the different de-
partments reveled some tension between the departments. I didn’t obtain
enough knowledge about the inner workings of the bureau to say anything
for certain about the reason for the tension. The leader of the Decease pre-
vention and control (DPC) department said that effort had been made to
unify the reporting, but without success. DPC did plainly not trust HMIS
for information. DPC thought HMIS used too long time to process the re-
port from the districts. DPC have reason to want information quick in or-

8.3 EPI-info 138

der to detect decease outbreaks. They had a number of weekly reports.
DPC had need for weekly surveillance data while DHIS version 1.3 was
designed for monthly/quarterly routine data.

After I had finished almost all the reports I was presented with a pile of
new reports. This reports were recently approved for use in Tigray. I had
only a couple of days left in Tigray so I left the work to include this in DHIS
to Kalkedan. On Saturday 23th of October I left for Addis Ababa. After a
week in Addis Ababa doing nothing of relevance for the project I took an
aeroplane back to Norway.

8.3 EPI-info

The health authorities in Tigray was not without computerised support in
their information handling. They used a system called Epi-info, both at the
bureau and in the districts. This system is developed and maintained by
Centers for Disease Control and Prevention (CDC). CDC is a operating compo-
nent under Department of Health and Human Services in the government
of United States. EPI-info is in the public domain, so you can basically do
what you want with it. They currently develop and maintain a Windows
version of the software, but a DOS version is also available.

In Tigray they still used the DOS version, but Windows versions were also
in use. To get an better understanding of what DHIS had to ‘compete’
against I am going to do a comparison between Epi-info and DHIS in this
section.

This is the description of the Windows version from epi-info’s web site.
The older DOS version together with the Geographical Information System
(GIS)-tool EPIMAP have the same functionality, but is more difficult to use.

Epi Info™ is a public domain software package designed for the
global community of public health practitioners and researchers.
It provides for easy form and database construction, data entry,
and analysis with epidemiologic statistics, maps, and graphs.
The primary applications within Epilnfo are (CDCP 2005):

MakeView A program for creating forms and questionnaires
which automatically creates a database.

Enter A program for using the forms and questionnaires cre-
ated in MakeView to enter data into the database.

8.3 EPI-info 139

Analysis A program for producing statistical analyses of data,
report output and graphs.

EpiMap A program for creating GIS maps and overlaying sur-
vey data on to them.

EpiReport A tool that allows the user to combine Analysis out-
put, Enter data and any data contained in Access or SQL
Server and present it in a professional format. The gener-
ated reports can be saved as HTML files for easy distribu-
tion or web publishing.

Here you can see that Epi-info is not very different from DHIS when it
comes to data gathering and analysis. The DHIS equivalent to MakeView
and Enter are the data elements you configure DHIS to use. DHIS offer the
possibilities of printing out questionnaires too. By using pivot tables, GIS
and the report module of DHIS you get a similar functionality to Analysis,
EpiMap and EpiReport programs of DHIS.

The differences are, however, significant. The most important difference
are based in the different problems they try to solve. Epi-info are made
with decease surveillance in mind. The data that need to be gathered are
different for each possible outbreak that need to be monitored. Therefore
Epi-info is designed to make it easy to make forms, input data, design re-
port and do data analysis. Epi-info is a excellent tool for gathering a lot of
data and do data analysis on them, and then to move on to another project.

DHIS on the other hand are designed with the primary health system of,
specifically, South Africa in mind. One leading thought behind DHIS have
been that the primary health units like clinics and hospitals gathers data
and report it to the district, the district reports to the regions and so on.
From DHIS version 1.4 any unit at any level in the organisational hierarchy
can be the reporting unit. Data in DHIS are also connected to a specific time
period, a month or a quarter.

The notion that data exist within an organisational hierarchy and belong to
a time period leads to a big difference between DHIS and Epi-info. In DHIS
data are connected with an organisational unit, the organisational unit exist
within an organisational hierarchy. Epi-info have no specific notion of an
organisational hierarchy or reporting period. You can have an input field
in a form that specify the organisational unit it belongs to and which time
period it belongs to, but the data are not easily aggregated across to health
units, districts, region or time period.

It is interesting to note that both systems is in a sense FLOSS. EPI-info is
public-domain software, you can get the source code if you request it. DHIS

8.4 Adapting DHIS for Tigray 140

is licensed with a FLOSS license. Both relies on non-FLOSS software com-
ponents, however.

8.4 Adapting DHIS for Tigray

Hirut did the greater part of inserting the data elements. The number
of data elements were past 1100, but a number of them were similar to
the ones in Addis Ababa which Woinshet, the head of the HISP project in
Ethiopia, had already typed into DHIS. We based our work on what Woin-
shet had done for Addis Ababa. The data elements and reports that the
team from the bureau decided to be included in DHIS were different in a
number of ways. The reports that were supposed to be sent to the federal
authorities were the same, but most of the reports used internally in Tigray
were different from those in Addis Ababa.

The months before my arrival Woinshet put a great effort into adapting
DHIS to the requirements of Addis Ababa. Many of these requirements
were the same in other regions we worked. The most important of these
requirements was that they wanted the system to handle data based on The
International Classification of Deceases (ICD). ICD is basically a number as-
signed to deceases according to a system of classification. In Ethiopia this
codes were used for in-patients and out-patients to specify which diagno-
sis the patients got. In addition the gender and the age group the patient
belonged to was recorded. Deaths were recorded in the same manner. If
this kind of data were supposed to be included as normal data elements
in DHIS each combination of ICD codes, gender, age group and whether it
was in-patients, out-patients or death should have it own data element the
number of data elements would pass 16,000 in Tigray:.

DHIS is designed with a minimal data set in mind. Preferably below 100
data elements. In Tigray they wanted close to 1,200 data elements in addi-
tion to the ICD data. In Addis Ababa they wanted a similar number of data
elements. Because of this Woinshet made a extension to DHIS to handle
ICD based data. This extension was hard coded into DHIS version 1.3.0.17,
therefore this was the version we used in Ethiopia. This extension being
hard coded meant that it would have to be reimplemented for each new
version of DHIS. It would probably be possible to make something similar
to a patch that could easily be patched into new versions of DHIS. The fact
that DHIS is made in MS Access and don’t have source code in the tradi-
tional sense makes this more difficult. MS Access is a RAD tool and stores
its data and code in a binary format.

While Hirut inserted the organisational structure of Tigray and most of the

8.4 Adapting DHIS for Tigray 141

data elements, I inserted the quarterly data elements and started on the
reports. The reports given to us did not fit well to be implemented in a
computer based system. To me it seamed like the bureau team had only
gathered as many reports they could find and given it to me. They had not
given thought to what data elements they wanted and how this data could
be presented in reports. The list of data elements they had given us where
also lacking data element necessary for a number of reports.

The reports they had given us where not made with computers in mind.
Some reports required regular data to be given in a comment/note field.
Some of the reports where weekly based, mostly from DPC, which DHIS
1.3 don’t support. What made things even more difficult where the fact that
anumber of reports where in Amharic or Tigrinian. The other people at my
team understood Amharic, but none of us understood Tigrinian. Because
of this challenges I was only able to complete the the quarterly reports, that
is the reports on Tuberculosis and Leprosy.

Because I was unable to finish the reports with the information I had, I
decided to postpone this task until I could talk to the departments at the
bureau. To make use of the time I had left in Addis Ababa, before we were
to go to Mekelle, I started on a small Java application. This application
automated time consuming tasks like ordering the data elements and in-
serting test data. The test data were needed in order to test the reports.
This application I have described in an other paper.

During our training at the bureau the following changes were proposed:

1. Automatically insert the values from the previous row into the new
row. This pertain to the graphical interface into the ICD extension
made by Woinshet. This would save a lot of repetitive selection val-
ues in the ICD input form.

2. Ambharic names on the months.
3. Have separate drop-down boxes for month and year

4. In Tigray they used a separate set of decease codes in clinics. The
ICD code is used by hospitals and health centers, but clinics have
their own codes. They wanted the ICD codes to show up when you
selected a hospital or a health center and the clinic codes when you
selected a clinic.

5. The order of input fields where different between the selection of in-
patients, outpatients and deaths in the ICD input form. This could be
considered a bug.

8.5 Problems with the DHIS software 142

Iimplemented all this request except number 2 and 3. I didn’t find any easy
way to change the month names in MS Access into Amharic names. The
input clerks doing the typing could speak sufficient English to understand
this. English is used as a administrative language alongside Amharic in
Ethiopia. Requirement 3 i dropped because it would require more than
changing the user interface. Months and years are coupled in the data
model of DHIS. I could possibly had conceived a way to do this without
changing anything, but the user interface. I didn’t deem it that important,
however.

8.5 Problems with the DHIS software

In Ethiopia we made extensions to the DHIS software that effectively made
it incompatible with the South African version. This extension was made
because the Ethiopian authorities demanded the use of ICD based data ele-
ments for reporting. If each data element were to be inserted as a standard
data element it would become several thousand data elements, many of
which would be rarely used. In Tigray it would become past 16,000 data
elements. The data set chosen in Tigray was already far from a minimal
dataset, with in the vicinity 1,200 data elements.

To effectively handle ICD based data we had to make changes to the core
of DHIS. The regular data elements is like a hash table with a data element
type and a value. The ICD data is more like a sparse matrix, in a health fa-
cility only a few combination of gender, age and ICD-code is used. To solve
this there was basically two options; ether hard code the extension into the
DHIS Access application or make a visually separate application feeding
on the DHIS database. In Ethiopia it was chosen to hard code the neces-
sary extensions into the DHIS application. Because MS Access is a RAD
tool it was not possible make the extensions without making it incompat-
ible with the South African version. This effectively made the Ethiopian
DHIS a fork. It was decided to hard code the extensions because it would
make DHIS more acceptable for the intended users. One user we trained
expressed that he liked that he could do all the data input through one
interface.

We could have sent the extensions to the South African team, but Ethiopia
was the only country which required support for the ICD code based input.
Because the extension was hard coded it was not possible to choose not to
have it. If DHIS 1.x was extensible, you could choose to include only re-
quired aspects of the system. This is, however, not so. DHIS 1.x is relatively
easy adaptable to new contexts in that you can easy insert data elements

8.6 Getting support from the HISP community 143

and organisational units and relatively easy make reports and graphs of
the data. It is not extensible in the sense that you can choose to include
external modules.

We also experienced the problems with incompatibilities between different
versions of MS Access and with incompatibility caused by using different
language locales. Even if the South African DHIS was tested for MS Office
97, 2000 and XP the extensions made in Ethiopia made DHIS only work
on the XP version of MS Access. Officials at the Tigray Health Bureau ex-
pressed discontent with this because they had MS Office 2000 as standard
at the bureau.

The installation procedure we had to use was also cumbersome. First we
had to install the South African DHIS using its installer, then we had to
copy our version of the DHIS application and the data file over the origi-
nal. We wanted to make an installer for the Ethiopian DHIS, but the South
African team used an expensive proprietary program to make the installer.
If we had the source code for the installer available we could have made
some small tweaks to make it install the Ethiopian DHIS application and
data file.

8.6 Getting support from the HISP community

On three occasions during the process of adapting DHIS to Tigray we sought
help from the HISP community. On the first occasion we had problems im-

porting data from EPI-info into our prototype. On the second occasion I

had problems implementing GIS support in DHIS. On the third occasion I

sought information about how to make an install script incorporation the

changes we made in Ethiopia. All the attempt at getting help was limited

by the slow and unreliable network in Mekelle, and to a lesser extent in

Addis Ababa. The only means of communication was through e-mails.

The problems we had with importing data from EPI-info, I have already
mentioned. We basically found out of this problem ourselves with little
useful information from the HISP network. In Mekelle the network was
frequently unavailable, which in a way made e-mail just as interactive as
regular mail, it went days between each time we checked our e-mail and
then we had to dig our way through spam. It could take minutes to open
each e-mail in a webmail client.

At one point during my stay in Ethiopia I planned to implement GIS in
DHIS. I had no idea on how to get about this. I experimented some with
ArcExplorer and looked at the content of related files. I had a hard time

8.7 Being the farench/faranji 144

figuring out what to do to implement this. I found no relevant information
on the Internet. I was in Addis Ababa where the network was usable when I
tried this. had some e-mail correspondence with the HISP community, but
did not get sufficient information to understand how to implement GIS. 1
really missed a step-by-step howto and explanations about the technologies
used. Documentation relating to DHIS and related software was altogether
rater limited. There was also a lack of communication channels for this
kind of support questions. The end of the story was that I decided not to
spend time on this as I had other things to do.

The question I had about making an installer for the Tigray version of DHIS
was quickly settled as I got the message that I had to have some expensive
proprietary software to change the install script. In other words I couldn’t
reasonably make an install script. The most helpful support we got from
the HISP community came through the visit of Sundeep Sahay.

8.7 Being the farench/faranji

In Ethiopia they have a word they use at foreign looking people, especially
white people. Actually it is two words which seem to have the same mean-
ing. One of these word I read about in my guide book to Ethiopia, this word
was faranji (Briggs 2003). Faranji can be translated to foreigner, not neces-
sarily a white foreigner. The other word was farench. This word, I was told,
came from an Ethiopian general that didn’t manage to pronounce French
right. This later came to describe white people. In the time the socialist
regime reigned and foreigners from Cuba were more common, kids in the
streets of Addis Ababa were shouting “cuba”. After the fall of the socialist
regime this seam to have changed to “farench”.

In this section I will give a short account of how I experienced being a
“farench” in Ethiopia. It is always differences in the culture, big or small,
between different countries and even between different cities. The biggest
barrier between people of different cultures is not as much in the way of
behaviour as it is in the language. The people I worked with in Ethiopia
spoke English and I therefore had no greater difficulty relating to them.
I don’t think it would be more difficult to work with French people for
instance. The difficulties I faced where mostly related to language, contam-
inated food and to too much attention.

The language problems were evident in our dealings with the Tigray Health
Bureau. A lot of discussions were conducted in Amharic and I had to ask
for a summary of the discussion from my colleagues. The three people I

8.7 Being the farench/faranji 145

worked with in Tigray all were from Ethiopia and therefore found it easier
to speak in Ambharic, leaving me out. Often the conversations at the lunch
and dinner tables were done in Amharic. The others spoke in English if
I said something, but the conversation almost always automatically went
over to Amharic until I said something again. It is very boring looking at
people speaking in a language you don’t understand.

What put most strain on my stay in Ethiopia where the almost two weeks
I where having serious stomach problems. I was expecting to get some
problems, but I got more than I bargained for. I where amazed at how
week [felt laying in bed with fever, even getting up from bed where a
challenge. I experienced what many have experienced before me, that I am
not invincible. It is easy to be proud and self reliant when you are healthy
and things go your way. I suppose I experienced what Job in the Bible
experienced, but on a much smaller scale. I were grateful when the fever
passed and I again could focus on our work. Through it all my relationship
with God and the Narnia books (written by C. S. Lewis) helped me through
the day.

Being a white man in a poor African country I could only expect a lot of
attention. White people from the developed world coming to Ethiopia are
immeasurably more wealthy than the beggars on the streets. I can’t really
blame them for asking me for money. It is just that there were so many of
them. When I walked from the university guest house to our office in the
Siddis Kilo branch of the university there were between five to ten people
asking me for money. I found it difficult to just ignore this people, but after
some time I realised that I just had to.

The beggars were men and women, old people and children. The children
were very determined and wouldn’t give up. Many children sold paper
napkins, chewing gum and similar things. They have to do this in order to
afford going to school, I was told. Some aid organisations provided nap-
kins for children to sell. It is more dignifying to sell things than to beg.

The begging I could deal with and was understandable. The frequent shout-
ing from children and even some adults were more annoying. I often heard
someone shout “farench” or “faranji” after me. It also annoyed me that
they took a much higher price from me than from my Ethiopian colleagues
at hotels. Considering how much wealthier I am even as a student, than
most Ethiopian people the lower price for Ethiopian nationals don’t seem
unreasonable. On the other hand Ethiopian people using hotels is not poor,
and it doesn’t give an impression of hospitality.

There is not much violent crime in Ethiopia, so I felt quite safe. Petty theft
is, however, not uncommon to face, especially if you are white. One time

8.7 Being the farench/faranji 146

I was walking in the streets of Addis Ababa one man threw him selves at
my feet, in order to distract me I guess. I noticed two men approaching
from behind on my left and right side. I managed to get out of the situation
without loosing my money, thankfully. This was the first time in my life
someone have tried to rob me.

It might seem that I make a pretty grave picture of my stay in Ethiopia, but
I am very grateful for the chance a got to be there. I met many interesting
people. Both Ethiopians and, after the Norwegian summer holidays where
over, | met many Norwegians. My colleagues from HISP where easy to get
along with, and I got the honor of being invited to a wedding. Coffee is
like small encouragements through the day, so I was happy that Ethiopia is
a coffee country. Coffee is said to be originating in Ethiopia, and espresso
like coffee with lots of sugar is available everywhere. Hot milk with coffee
where also common, and became one of my favorites. Finally I consoled
my self with the fact that even if my surroundings were unfamiliar to me,
working with a computer was not.

Chapter 9

FLOSS in Ethiopia

During my stay in Ethiopia [hoped to discover how the situation for FLOSS
was there. Most of my time was spent on adapting DHIS, dealing with
Tigray health bureau and being sick, so I didn’t get time to do real research
about FLOSS. FLOSS in Ethiopia are still too small for statistical research
to be interesting. The thing I learned about FLOSS in Ethiopia I learned
from searching the Internet and talking to people. What I have found I will
present in this chapter.

9.1 Economic argument for FLOSS

In this section I will use some simple calculations to show the cost of license
fees for a country like Ethiopia. This is to show that even if the license fee
in many cases are a small part of the Total Cost of Ownership (TCO) it is
significant for a developing country. TCO is a measure that aspire to give
an indication of what the cost of a program is through all its life span.

According to CIA World Factbook there were 75.000 Internet users in Ethiopia
in 2003. According to a 2003 estimate (Encyclopedia Britannica) there lived
over 65 million people in Ethiopia. This give a Internet users rate at 0.11%
of the population.

The GDP/capita in Ethiopia is $800 according to World FactBook. At Ama-
zon you have to pay $319.99 (5.sep 2005) for MS Office 2003 standard ver-
sion. For MS Windows XP Home edition you have to pay $179.99. This
means that an Ethiopian have to work 7.5 month of GDP/Capita without
eating to buy the common MS Windows and MS Office combo. In Norway
we have a GDP/capita of $40000, which means we have to work 0.15 month

9.2 The TRIPS agreement 148

(4.5 days) for the same combo, without eating. For Windows 2003 server (5
client) cost $788.99 which becomes almost one year in GDP/capita.

Compared to buying a new PC which cost in the vicinity of $600 - $1200, the
software is rather expensive. MS Windows is often included in the package
when you buy a new PC. Because of deals Microsoft makes with PC manu-
factures, MS Windows is sold at a significant lower price. According to Ove
Arntzen at Dell in Norway the price for Windows XP Home bundled with
their PC’s is $50. This implies that the operating system constitute from
4% to 8% of the PC’ cost. If you include MS Office 2003 the proprietary
software constitute from 62% to 21% of the PC’s cost. Considering that you
have to have applications for the operating system and computer to be of
any use, it is reasonable to compare the total price of the software running
on the PC with the PC’s cost.

It is often difficult to buy PC’s without MS Windows because Microsoft
have Original Equipment Manufacturer (OEM) agreements with many PC
manufacturers. Manufacturers who assemble brand marked PC’s get a bet-
ter deal on Microsoft licenses the more they choose to affiliate with Mi-
crosoft. The more PC’s with windows a manufacturer sell, the better deal
the manufacturer get with Microsoft.

FLOSS licenses do not restrict how the software should be distributed and
permits distributors to charge for the service of distribution. All the small
computer shop I saw in Ethiopia sold pirate copies of proprietary soft-
ware. If this shops were to get hold of good FLOSS software they could
sell Cd’s with this software legally. A German organisation called Rele-
vantive (Wwww.relevantive.de) visited Ethiopia in 2004 and planned to ini-
tiate an information centre for FLOSS (http://www.relevantive.de/osic.html).
This centre was going to give support, information and hand out Cd’s with
FLOSS software. This project is currently stalled.

9.2 The TRIPS agreement

One man I met in Addis Ababa said that MS Window was open source
because you could get it for free. He meant he could get a pirated binary
copy of Windows free of charge. This man had not really understood what
FLOSS is, but he had a point. As a rule software in Ethiopia are pirated. I
can’t blame them. Why should a poor country like Ethiopia give money to
already far to wealthy western companies? It is not like the companies are
actually loosing money, they just receive less profit.

wwww.relevantive.de
http://www.relevantive.de/osic.html

9.3 Political support for FLOSS 149

Many companies do argue that they loose money, and based on the as-
sumption that everyone! would buy the software if they had to pay, they
calculate the loss. Many of those who obtain pirated software would never
buy the software for the real price. This estimated loss is part of the reason
the Agreement on Trade-Related Aspects of Intellectual Property Rights (TRIPS)
(World Trade Organisation 1994) have been made. The TRIPS agreement
was made through the World Trade Organisation (WTO) and took effect in
1995. This agreement was made in order to get laws about IP more simi-
lar between countries. The least developed countries were given 11 years
to implement the agreement, meaning that Ethiopia should have imple-
mented it by now. Software piracy in Ethiopia are epidemic, so I wonder
how Ethiopia are going to enforce IP laws concerning software.

I find it hard to be very sympathetic towards the TRIPS agreement. After
all, who have the most intellectual property to protect, the developed or the
developing world? No matter what you may think of it, however, it creates
an even better incentive for Ethiopia to start using FLOSS. There is reason
to believe that software piracy can strengthen Microsoft’s position in the
developing world. Through software piracy Microsoft’s products get into
widespread use, and thereby familiarising people with its products.

9.3 Political support for FLOSS

Despite the ambitious aspirations of the Ethiopian government for leapfrog-
ging Ethiopia into the information age the awareness off and knowledge
about FLOSS is low. The attitude of the Ethiopian government can be illus-
trated by this statement by Meles Zenawi, quoted in Guardian (Cross 2005):

“Our position is determined by the fact that proprietary sup-
pliers have the money to provide initial support,” he says. “To
implement open source needs a minimum of training and at the
moment we don’t have that. In five or 10 years time, we will be
in a position to choose.”

To check what kind of impact this policy decision has had on the choices
of web servers, both the operating system running the web server and the
web server it self, I have done an analysis of the network in Ethiopia in
section 9.7. From this analysis I found only one web server using FLOSS
software, of the 37 web servers considered.

'Everyone they estimate to have a pirated copy of a proprietary software.

9.4 FLOSS usage 150

Relevantive, in their travel to Ethiopia, interviewed the Head of Computer
Science Department at AAU, Dr Dawit Bekele.

He said that the main drawback for open source software is the
common opinion; “If we share, we loose”, regarding the shar-
ing of code by open sourcing it. The Ethiopian government in-
vests heavily into software development, but the ministries and
administrations keep the code closed and to their own. After
some years it is obsolete and has to be rewritten — more than
often from scratch

(Horstmann 2004).

9.4 FLOSS usage

My experience from Ethiopia confirms that the awareness of FLOSS is low
even though the knowledge and usage of ICT is on the rising. I was cu-
rious about whether software shops in Ethiopia sold any FLOSS software,
so I went into all the software shop I could find. Most of this shops sold
unlicensed copies of proprietary software alongside some software that at
least came in a box, many which seemed second hand. Even though it is
perfectly legal to sell Cd’s with open source software I did not see any shop
trying to do this.

The previously mentioned organisation Relevantive was in Ethiopia in con-
nection with a planned project with the following aims in Ethiopia
(Muehlig and Horstmann 2004):

¢ Provide technological infrastructure (i.e. computers and related equip-
ment)
* Provide knowledge on open source technologies.

¢ Initiate a project that may work as a blueprint for similar future projects
in Ethiopia or other African countries.

¢ Understand and gather knowledge on culture specific usage of tech-

nology.

Some representatives from Relevantive traveled to Ethiopia in April 2004
in connection with the project’s evaluation phase. In the report from this

9.5 Ethiopian FLOSS organisations 151

travel, a man named Daniel Yacob was mentioned in connection with open
source. Daniel Yacob is director of the Ge’ez Frontier Foundation (GFF)
(http://lwww.geez.org/) and is very active in the Amharic translation and
localisation of open source software. He is working on an Amharic trans-
lation of the Gnome desktop environment. Daniel Yacob mentioned three
considerations about open source in Ethiopia (Horstmann 2004).

1. FLOSS Software being free of cost was no advantage, as most of the
software in use is either provided by development aid or pirate copies.

2. Developing FLOSS Software voluntarily in one’s spare time would
find no supporters, as the need for paid work is overwhelming.

3. One of the major advantages of Linux turned out to be its security
concept and invulnerability towards viruses. As the local knowledge
regarding computer/network security is very low and - because of
low bandwidth — the stakes for downloading the latest patches and
anti-virus signatures are very high, keeping computers free of ex-
ploits is highly valuated.

As might be expected I saw very little use of FLOSS in Ethiopia. The ex-
ceptions are our software DHIS, which had not actually come to use yet,
and the public domain Epi-info. At AAU I saw that they used the FLOSS
web proxy software Squid. The United Nations Mission in Ethiopia and Er-
itrea (UNMEE) (http://www.unmeeonline.org/) uses FLOSS and is conscious
about it. The Ethiopian newspaper The Reporter has an on-line edition
hosted on a Linux server and using Apache and PHP, but this host is lo-
cated outside Ethiopia. The Reporter has been a useful source for me in
writing this thesis. Other than this I have seen little evidence of FLOSS
usage in Ethiopia.

9.5 Ethiopian FLOSS organisations

Most FLOSS project are international, with contributions from actors from
different countries. To find projects that can be said to “belong” to a specific
country can be difficult, even more for Ethiopia with its overall limited
participation in FLOSS. An obvious exception to this are language related
projects. Other exceptions are organisation promoting FLOSS for a specific
country or region of the world, and user groups like a Linux User Group
(LUG).

In search for user groups relating to FLOSS I looked at the directory of
LUGs listed at http://www.linux.org/ and found none. At the Linux Counter

http://www.geez.org/
http://www.unmeeonline.org/
http://www.linux.org/

9.5 Ethiopian FLOSS organisations 152

(http://lugww.counter.li.org/) I found one. I checked this at the 7th of August
2006, when I checked this just some moths earlier I found none, so things
are happening in Ethiopia. Computers are still far from becoming a tool for
hobbyists in Ethiopia, but there are encouraging developments. The use
of computers is mostly limited to businesses and the government. Given
the feeble support for FLOSS by the government it is no surprise that the
use of FLOSS in Ethiopia is still limited. However, I found one Ethiopian
FLOSS organisation working on localisation to Ethiopian languages and
the recently formed Ethiopian Free & Open Source Software Network
(http://www.efossnet.org/) which was formed in February 2005.

Given Ethiopia’s current political system of ethnic federalism, where each
region can decide on their own working language, the support for multi-
ple languages and translations between them is important. Microsoft have
only recently started to localise MS Windows and MS Office to Ambharic.
Given Microsoft’s feeble interest in localising the most spoken language in
Ethiopia it is a long shot to think they will do it for Oromo or Tigrinya.
With FLOSS software the Ethiopian government can pay developers and
translators to do the job and pay in local currency.

The issue of localisation is what the previously mentioned GFF has as its
mandate. GFF have made a number of small tools for viewing and editing
the Ge’ez script for Windows and Unix systems. Interestingly it has done
work to localise Latex and Perl. GFF have even done work on making pro-
posals for the Unicode standard for the Ge’ez script. From the source files
released by GFF I have read, it seems like the work has almost exclusively
been done by Daniel Yacob. On SourceForge I found a project called LibEth
(http://libeth.sourceforge.net/) which is related to GFE.

At the time being there is little organised activity on behalf of FLOSS in
Ethiopia, despite recent encouraging developments. Africa as a whole is
poorly represented in the FLOSS community. Because the awareness of
FLOSS is rising steeply and many begin to see FLOSS as a mean to bridge
the digital divide, this is now changing. An organisation called Free and
Open Source Software Foundation for Africa (FOSSFA) (http://www.fossfa.net/)
have been founded to promote the use of FLOSS in Africa. FOSSFA has
it origin from a ICT workshop in Addis Ababa held in November 2002.
An other organisation seeking to promote FLOSS in Africa is Open Source
Africa (http://www.opensourceafrica.org/).

http://lugww.counter.li.org/
http://www.efossnet.org/
http://libeth.sourceforge.net/
http://www.fossfa.net/
http://www.opensourceafrica.org/

9.6 Participation of Ethiopia in FLOSS 153

9.6 Participation of Ethiopia in FLOSS

Ethiopia faces the same challenges as other developing countries when it
comes to participation in the FLOSS community. In centres of higher learn-
ing in Ethiopia there are people with sufficient knowledge to contribute to
FLOSS. Internet access is congested because of a low bandwidth interna-
tional connection, but this will improve in the near future if the plan to
connect to the EASSy cable comes true.

The current participation in FLOSS project by Ethiopians are related to in-
ternationalisation and localisation. The work that is supported by the GFF
are examples of such. Another project is being lead by Dr. Dawit Bekele at
AAU. Dr. Dawit together with a team of three other participants have made
a prototype localisation of OpenCMS into Amharic. OpenCMS is a Con-
tent Management System (CMS) written in Java. The previously mentioned
Daniel Yacob is an interesting person in the Ethiopian localisation com-
munity. Daniel Yacob is the responsible person for localisation of Gnome
and Open Office, as well as a number of localisation software hosted on the
GFF website. He has also involved himself in the localisation of the Ubuntu
Linux distribution.

A project which is not software related, but is through information sharing
in the spirit of FLOSS, is Wikipedia. Wikipedia is a free encyclopedia. All
the articles in this encyclopedia is made and edited by voluntary partici-
pation. Anybody can by default make or edit articles in this encyclopedia.
Mechanism are in place to censor out illicit content and behaviour, and to
mark articles according to its quality. This extremely low barrier to edit-
ing articles have worked well to provide a lot of information, but a critical
sense is needed. Then again a critical sense is an asset even when dealing
with more authoritative sources. The Wikipedia project aims to have ar-
ticles in all languages, and have facilitated this. The Amharic Wikipedia
have 274 articles as of April 2006. The Wikipedia for other languages used
in Ethiopia have barely any content at this time.

9.7 Analysis of the network in Ethiopia

Because of curiosity and because I wanted to see the usage of open source
operating systems and web servers on Ethiopian hosts, I have done some
investigation on host in the et DNS domain and on IP addresses owned by
ETC. I will first describe how I searched for the host and what programs I
used to do this, then I will present the result.

9.7 Analysis of the network in Ethiopia 154

When I started this search I had no clue to what IP addresses belonged to
Ethiopia. IP addresses is not organised according to geography, but more
or less randomly distributed by Internet Registrars associated with Internet
Assigned Number Authority (IANA). IANA assigns available IP addresses
to Regional Internet Registry (RIR). RIR assigns IP addresses to Local Inter-
net Registry (LIR) or National Internet Registry (NIR) which again assigns IP
addresses to Internet service providers.

To find the IP-range owned by ETC i decided to search for all the hosts
registered in the et DNS domain. ETC is the only ISP in Ethiopia, so if
I could find the IP range owned by ETC I would find all IP addresses in
Ethiopia. The DNS domain et is also owned by ETC. All the hosts in the et
domain is not necessarily located in Ethiopia, but I am more likely to find
hosts located in Ethiopia in this domain. My first thought where to query
the DNS server for the et domain. I found the DNS server for this domain
by querying the WHOIS database. The different RIR’s have WHOIS servers
with a database over assigned domain names, IP-addresses and various
other information. I used the program whoi s witch searches a number of
WHOIS servers. By using this I found the following DNS servers for the
et domain.

DNS servers for the et domain

Naneserver | nformation

Nameserver: nsl.gip. net.

| P Address: 204.59. 144, 222
Naneserver: nsl.tel ecomnet.et.
| P Address: 213.55. 64. 36
Nameserver: ns2.gip. net.

| P Address: 204.59.1.222
Naneserver: ns2.tel ecomnet. et.
| P Address: 213.55. 64. 38
Naneserver: ns3.gip. net.

| P Address: 204.59. 64.222

DNS uses port 53 for communication and by searching this nameservers I
found that all the nameservers in the gip.net domain were up and running.
The nameservers in the telecom.net.et domain had a firewall that filtered
out port 53. When I at a later time checked the telecom.net.et servers they
where not even running. I concluded that the servers in the gip.net domain
where the ones in use, with nsl.gip.net as the primary server.

Now I had the primary DNS server for Ethiopia so now I tried to find all
the sub-domains registered in this server. This can be done with something
called zone transfer. The purpose of zone transfers is to copy the content
of a DNS server database to be used by a secondary server. Zone transfers
are often only allowed for hosts within a specified IP-address range. This
where the case for the aforementioned servers. Because I couldn’t find any
other way to get all the records of a DNS server I dropped this strategy.

9.7 Analysis of the network in Ethiopia 155

The next strategy I thought of where to search Google for all et domains.
Google offers domain specific searches. This way I could find most of the
hosts in the et domain running a web server. To automate this I made
a script that made a search query to Google and parsed the result. The
parsing captured all sub-domains of et in the links found in the search
result. Because many host names can be served by the same physical host
I'looked up the IP address for the host names.

When I first did this at 13th of September I found 89 host names on 11 phys-
ical host. When I did this the day after I found 157 host names on 21 phys-
ical hosts. Many of this hosts where not located in Ethiopia. I searched the
WHOIS database for the different IP-addresses in the result and found that
the range 213. 55. 64. 0 - 213. 55. 95. 255 belonged to ETC. There are
over 8000 IP-addresses in this range, which is a small number for a whole
country. Using a ping sweep on this address range on 13th of September I
found 895 host to be up. A ping sweep sends a small message to every IP-
address in the range and checks for replies. I used a program called nmap
for this. Normally an ICMP Echo message is used for pinging, but firewalls
often filter this messages out. nmap uses various techniques to circumvent
tirewalls. Most of the previously mentioned hosts is probably only clients
with no server software running on them.

I repeated the ping sweep on 15th of September. This time I also checked if
port 80 where open on the running host I found. Port 80 is the standard http
port used by web servers. I wanted to know how many of the host I found
where running a web server. Of the 1162 host I found that 42 had an open
port 80. I combined this with the hosts in the ETC IP address range, which
I found through the Google search. I got a total of 46 web hosts. Then I did
a operating system scan and version scan on this 46 addresses. An operating
system scan tries to guess the operating system running on the host and
a version scan tries to guess the version of the server software running on
the host. With this data I can get an estimate of the usage of FLOSS for web
servers.

Of the 46 IP addresses I decided to scan for operating system and web
server version, 39 were up. This 39 hosts will form the basis of my study
of the usage of FLOSS programs in the Ethiopian web server marked. Of
the 39 hosts that were found to be up I found information about 37 of them
(See table 9.1). The Cisco IOS and MS ISA web servers are not web servers
meant to present content to the Internet, but used to configure the other
services running on it. The other services can be fire-walling, routing, VPN
or other kind of infrastructure related services.

9.7 Analysis of the network in Ethiopia 156

Operating System

Web Server | Windows GNU/Linux Solaris CiscoIOS Unknown
Apache 1

MSIIS 17

SunONE 3

Netscape 1

Cisco IOS 11

MS ISA 1

Unknown 2 1

Table 9.1: Operating systems and web servers used in Ethiopia

Chapter 10

Development of a Plug-in
Framework for DHIS 2

In this chapter I am going to describe the second case study I did as part
of my master thesis research. Compared to the case study I conducted in
Ethiopia this is a smaller case study, but a relevant study non the less. This
study is more technology focused as it is a practitioner study where I act
as a FLOSS programmer. This case has longer time span compared to my
work in Tigray, but my involvement in this case has only been part time.
I conducted this case study in parallel with writing this thesis, and doing
other tasks relevant to my studies. Through this case I hoped to learn about
participating in a FLOSS project on a practical level, at the same time as I
wanted a chance to do more programming.

In Ethiopia I worked with DHIS 1.3 and there was ongoing efforts to im-
plement the next major release in the 1.x strain of DHIS, version 1.4, in
South Africa. DHIS 1.4 is an architectural remake of the DHIS database,
and to a lesser extent the user interface. DHIS has over the years been de-
veloped layer upon layer to incorporate changes demanded by users. The
code increasingly came to resemble a spaghetti like mess, which was hard
to maintain and few really understood. The pre-DHIS 1.4 architecture also
had to be changed to enable important new features. Some of the assump-
tions implemented in the core in the previous releases was specific to South
Africa at the time of implementation, this had to be delegated to the flexible
exterior of the application. Some of the limitations in DHIS 1.3 was:

¢ The organisational hierarchy was limited to five levels.

* Data entry was only possible for the lowest level in the hierarchy (the
facility level).

10.1 Why the need for a reimplementation? 158

¢ [t was only possible to collect monthly data in the main module and
quarterly data in the tuberculosis and leprosy (TB) module.

DHIS 1.4 is still implemented in MS Access, but the architectural remake
removes the previously mentioned limitations. DHIS 1.4 introduces many
larger and smaller improvements, in addition to removing this limitations.
One of the improvements is that DHIS 1.4 makes it possible to use a dif-
terent Database Management System (DBMS) than the one MS Access uses.
At the time of writing it is possible to transfer structures and data to a MS
SQL Server, and there are plans to make transfer tools to MySQL and Ora-
cle too. The user interface is run in MS Access, but it uses another DBMS
in the back end. DHIS 1.4 also introduces the concept of data sets. Data
sets groups together a number of data elements which is given a reporting
interval. A data set can for instance be data related to malaria reported on
a weekly basis, or finances reported on a monthly basis.

Development of DHIS 1.4 has been going on for some time. At the time of
writing DHIS 1.4 is released, but some features are still not implemented.
DHIS 1.4 should be regarded as a “bridging” version to DHIS 2. DHIS
2 is the version I have concerned me with, and is the topic of this case
study. DHIS 2 is a total reimplementation of DHIS 1.4 using only FLOSS
components, releasing DHIS from a dependency on specific versions of MS
Office.

10.1 Why the need for a reimplementation?

There are several shortcoming in the DHIS 1.x line which is linked to the
limitations of MS Access and the style of development it supports. This
limitations is the primary reason it was decided to make a total reimple-
mentation of DHIS. I will explain several of the limitations in this section.

MS Access is a Rapid Application Development (RAD) tool where the focus
is more on facilitating fast application development than it is on making
the application maintainable. As a consequence DHIS 1.x is not very mod-
ularised. The user interface, consisting of forms and reports, is tightly in-
tegrated with VBA scripts and database tables. The DHIS 1.x strain is pri-
marily developed by one small team in South Africa. Because of the “onion
architecture” of the software only the development team leader, Calle Hed-
berg, understood the software in depth. The term “onion architecture”
reflects the fact that the software was step vise expanded and improved
according to user demands. This changes was made layer upon layer, cre-
ating tight dependencies between different part of the software. MS Access

10.1 Why the need for a reimplementation? 159

naturally lend itself to this style of programming. The design of DHIS 1.x
have not been done in splendid isolation, but the development is and has
been done by one small team.

DHIS 1.4 fixed some of the architectural problems the previous releases
had. This version is, however, still limited by the MS Access platform.
MS Access is not made with a open distributed development process in
mind. MS Access is as a RAD tool primarily developed to support applica-
tion development by one programmer, or a small team of closely cooperat-
ing programmers. MS Access is in other words designed to support small
scale cathedral-style development. To harvest the collective capabilities of
the HISP network it was decided to base the development of DHIS 2 on a
community model. To facilitate this the core of DHIS had to be built on a
modular base.

A serious limitation in MS Access is the maximum size of the MS Access
database, a single database file is limited to 2GB. At the central level in
South Africa the database size was closing in on this limit. The MS Ac-
cess database is not designed to handle many simultaneous requests and
therefore do not scale well according to the number of users. Neither to
MS Access scale well according to the size of the database. This is mostly
solved by the possibility to transfer the database to a better DBMS in DHIS
1.4. Still DHIS 1.4 relies on the MS Access user interface which looks sim-
ple and out-dated. The user interface is clearly improved in DHIS 1.4 com-
pared to 1.3, but is still limited by MS Access. A fancy user interface is not
important for the functionality of the system, but is important to the overall
user experience.

Turning our attention to the internal architecture of the DHIS 1.x it should
be noted that MS Access is built around a two tire architecture. There is a
user interface tire with forms and reports and there is a database tire with
tables and queries. The business logic is spread into both the user interface
tire and the database tire. The current best practice for database applica-
tions is to use a three tire architecture which clearly separate between user
interface, business logic and the database. This architecture is easier to
change and extend, and is better for distributed development.

The DHIS 1.x strain is a stand alone desktop application and the only way
to transfer data between each instance of the application is through export-
ing and importing of data files. For larger offices with several people doing
data input and analysis it requires some effort to export and import data
between the different DHIS installations. It would be easier to have a cen-
tral database accessible by LAN. To support different use scenarios ranging
from a single installation to a corporate LAN it was decided to web-enable
DHIS.

10.2 The community model in DHIS 2 160

The cost for MS Office and MS Windows licenses was not an issue in South
Africa when DHIS was first implemented, because MS Office and MS Win-
dows was already in widespread use. The MS Windows and MS Office
combo is commonly available in developing countries, with or without a
license, so the cost savings argument have up until now not been a strong
argument. This can change as Microsoft shows more interest in emerg-
ing markets, and because of international agreements like the TRIPS agree-
ment.

Basing an application that is supposed to be used by many different users
in different contexts on MS Access gives several challenges. MS Access
is clearly not designed for this. Even the basic boolean values; true and
false, have different representation in different localisations of MS Access.
The update life-cycle of MS Office and MS Windows makes it necessary to
support a matrix of MS Office, MS Windows and language combinations.
We experienced this in Ethiopia with the column separator issue and the
issue with the ICD extension to DHIS, making DHIS only compatible with
the XP version of MS Access.

10.2 The community model in DHIS 2

The development process used to develop DHIS 2 is more like many other
larger scale FLOSS projects. With distributed development between more
or less independent actors. For this to work a community has to be built
around DHIS 2. In this section I am going to describe how this is done for
DHIS 2.

The HISP community is the most important asset for the development of
DHIS 2. There are many different peoples within this community (or net-
work if you will) ranging from ICT professionals to health workers, and
with people from both high-cost and low-cost countries. HISP has close
ties to the academic community and a lot of contribution is sought from
this community. Contribution is also sought through paying ICT profes-
sionals in low-income countries. Through seeking contributions from this
two sources an application can be built with very little monetary cost. Mas-
ter students to not get any pay. PhD students gets their pay from the state
or other sources of scholarship. ICT professionals from low-income coun-
tries like Vietnam to not demand much money.

At the University of Oslo, which is the central node for DHIS 2 develop-
ment, a course is held called Open Source Software development (INF5750).
The practical assignments of this course is to participate in the DHIS 2 de-
velopment. Most of the students taking the course are not seasoned Java

10.2 The community model in DHIS 2 161

programmers, and the student spend a lot of time familiarising themselves
with the frameworks used in the DHIS 2 development. The course is cred-
ited for one third of a semester, so there is a limit to what the students are
able to do. Some of the students might catch a more long term interest and
continue after the completion of the course, through writing a master thesis
relevant for DHIS 2 and later on a voluntary basis. This is not unlike other
project where there is a relatively small core and many who make small
contributions. In the following paragraphs I will look into who the major
contributors to the DHIS 2 core are.

Judging by the number of commits to the DHIS 2 Subversion repository
there are three people who have contributed more than any others. All this
people are Norwegian and are or has recently been master students at the
University of Oslo. The three top commiters according to the number of
commits are responsible for 50% of the total number of commits. Looking
at the number of commits is a poor metric for measuring contributions, one
commit can possible be more significant than a hundred commits.

To be better able to judge the value of the contributions I will use the size
of the difference caused by a commit as a metric. When changes are com-
mitted to the repository the difference between the current version and the
committed version is stored. The size of the difference is the number of
characters in the diff log. This is a quite good metric because the addition
or change of text files create large diff logs, but addition or change of bi-
nary files creates small diff logs. Source files are typically text files. By this
metric only one of the three previous top committers are still among the
top three. They are still among the top six committers, however. Among
the new three top committers there are two Norwegian master students
and one Vietnamese. According to this metric there are six committers that
stands out. The six top committers stands for 79% of the total size of all the
diff logs. All of these except one are Norwegian master students. In total
there are 73 committers. See Table 10.1.

Nationality | Role” Commits | Size of Commits’
Norwegian | Master student 13 28863222
Norwegian | Master student 450 10054784
Vietnamese | Hired 55 7461401
Norwegian | Master student 15 7243223
Norwegian | Master student 212 5515440
Norwegian | Master student 259 5482552

"Reason for contributing
"I characters

Table 10.1: The top six contributors to the DHIS 2 core (31st of August 2006)

10.3 My role in the project 162

There are of cause other ways to contribute to DHIS 2 than to commit code.
Contribution of documentation and support is just as important, and so is
the maintenance of the HISP web site. The efforts made to test and config-
ure DHIS 2 out in the field is not shown by the Subversion commit statis-
tics, neither. It seams clear, however, that it is mostly Norwegian master
students who contribute to the DHIS 2 core. HISP have hired four develop-
ers in Vietnam, who previously was master students. One of these came in
third place according to my Subversion commit statics. The managerial role
in the project is taken by two PhD students. In addition to the work done
on the DHIS 2 core there is work going on in India, Vietham and Ethiopia
to test and configure DHIS 2. DHIS 2 has very limited cooperation with
other faculties at the University of Oslo and limited contributions from the
health systems where DHIS is used.

For the development of DHIS 2 we have a web site' and commonly used
services like version control, wiki and issue management system. An overview
of the collaborative services used can be seen in Table 10.2. Communication

Service Software License

Wiki & weblog Confluence | FLOSS project/Non-profit license”
Issue management system | Jira FLOSS project/Non-profit license
Version control system Subversion | BSD-style license

Mailing list Mailman GPL

Build system Maven 2 Apache License

“Special non-FLOSS license provided by Atlassian

Table 10.2: Collaborative services used in the DHIS 2 development

is mostly done through the e-mail list. More direct communication through
the use of IM, telephone and talking face to face is also quite common. It
is difficult to track the direct communication, so it is difficult to say how
much communication is done in this way. The Wiki and Weblog are only
used by a few.

DHIS 2 is currently licensed under a permissive BSD style license. This
is done in the hope that it will make DHIS 2 more acceptable in business
settings, and widen the use of DHIS 2.

10.3 My role in the project

I started to participate in the HISP network at a time when talks about
implementing DHIS on a totally new platform had recently started. The at-

http://ww.hisp.info/

http://www.hisp.info/

10.4 What motivated me to participate 163

titudes in the Norwegian node of HISP, which were going to be the central
node in DHIS 2 development, was clearly in favor of implementing DHIS
2 using Java. There was some early talks about using a Java 2 Enterprise
Edition (J2EE) framework and Enterprise Java Beans (E]B), but this was aban-
doned because J2EE and especially EJB has a notorious reputation for com-
plexity. Not long before I left for Ethiopia it was more or less decided that
DHIS 2 should be implemented using Java, but using lightweight FLOSS
frameworks in place of J2EE. The Spring framework was a good contender,
so I was given some literature about Spring that I brought to Ethiopia. Cu-
rious as I was about this framework I spent some time in Ethiopia learn-
ing this. The helper application I made in connection with the adaption of
DHIS 1.3 in Ethiopia was made using this framework.

When I came back from Ethiopia I was interested in spending some time
working with the DHIS 2 development. At the University of Oslo they had
just started to give the DHIS 2 development course so I singed up. I also
participated somewhat in the planning of this course and the major thing
that concerned me was that DHIS 2 should be extensible. This was the
reason for forming a group to look into the possibility for making a plug-in
framework for DHIS 2. The reason for my concern was the issues relating
to the ICD codes in Ethiopia. The lack of extensibility in the core of DHIS
1.x had mandated a choice between making a separate application feeding
on the DHIS database or making a fork of DHIS.

The group formed consisted of me and an other master student, Ole Pet-
ter Aasen. Aasen took the university course from another city in Norway
named Lillehammer while I was located in Oslo. Aasen was in Lilleham-
mer because he had a job there. We met face to face before the course
started and only one time during the course. Most of our interaction was
done through IM, and a lesser extent e-mail. We also kept some wiki pages
about our plug-in module and had a project in the issue management sys-
tem, which was a course requirement. After the INF5750 course had come
to an end I was essentially on my own in experimenting with the creation
of a plug-in framework.

10.4 What motivated me to participate

I had basically four things that motivated me to participate in the DHIS 2
development. I wanted to learn to be a better Java programmer, and learn
the interesting frameworks and tools used in the development of DHIS 2.
I wanted to actively participate in a FLOSS project, to learn how to act and
communicate in such a setting. I wanted to work on an actual application,

10.5 Making the application extensible 164

not just some useless application made to learn Java. And last I needed the
credit points that the course gave me. Course or no course I would have
participated in DHIS 2 development, anyhow.

10.5 Making the application extensible

Inspired by my experience with the ICD extension in Ethiopia, which was
hard coded into DHIS version 1.3.0.17, I was determined to make DHIS 2
sufficiently extensible to be able to make the ICD extension without mak-
ing a fork. On the planning session we had about the upcoming course
INF5750 I said that I wanted to look into different ways of making DHIS 2
extensible. In this section I am going to present my experiences from this
task.

Initially I had a plan to make DHIS 2 extensible through the use of plug-ins.
Plug-ins are encapsulated pieces of software designed to be plugged into a
mother application. This plug-ins provide additional features to the mother
application. Plug-ins are usually placed in one or more specified directo-
ries where the plug-ins are automatically discovered at application start-
up. The plug-ins can also be specified in an configuration file or a start-up
script. I and Aasen, my coworker during the duration of the course, de-
cided to start looking for existing plug-in frameworks. The mother applica-
tion needs to be designed with plug-ins in mind, and a plug-in framework
provides the sockets where plug-ins can be plugged into. Our initial plan
was to find a plug-in framework and find out how this can be used with
the mother application to provide the necessary extensibility to be able to
make an ICD plug-in.

We looked into the following plug-in frameworks. This frameworks are
pure plug-in frameworks. Pure plug-in frameworks are designed to have
just a minimal mother application which basically just starts up the plug-in
framework, discover and start plug-ins. All the functionality is provided
by the plug-ins. These plug-ins will also provide sockets which other ap-
plications can plug into. These extension sockets are commonly called ex-
tension points. Other plug-ins can subscribe to an extension point. The
plug-in providing the extension point is responsible for providing the nec-
essary features and resources to the plug-ins subscribing to the extension
point. Such an application naturally needs a minimum number of plug-ins
to be able to operate.

e Java Plug-in Framework (JPF)
¢ Emersion (Web-app framework based on JPF)

10.5 Making the application extensible 165

¢ Platonos
¢ Knopflerfish OSGI

¢ Eclipse

For some of the frameworks like JPF you can make the mother application
as large as you want, it is not necessary to make a pure plug-in application
from it. JPF is a minimal plug-in framework, it only provides the minimal
functionality necessary. Eclipse is an application in its own right, providing
many useful extension points. None of these plug-in frameworks, except
Emersion, was made with web applications in mind. Emersion is designed
for web applications and uses JPF as its plug-in framework.

Emersion did not really fit our need, but we decided to use it as a starting
point to make our own server side plug-in framework. The DHIS 2 appli-
cation was at this time in its infancy of development, so we concluded that
it would be too difficult to build a plug-in framework into the evolution-
ary prototype being developed. This would have required us to convince
all the other developers to build their modules using unfamiliar concepts
like extensions points. Besides we had not yet proved that it was feasible
or desirable to make DHIS 2 using a pure server side plug-in framework.
For this reasons we decided to make a throwaway prototype as a proof of
concept. We gave this prototype the unimaginative name plug-in-demo.

For reasons I will explain in the following paragraphs it became a real chal-
lenge to make plug-in-demo. The development of plug-in-demo was more
than enough work for the course. We never came around to implementing
extension points in the real DHIS 2 application, and we could plainly forget
about making an ICD plug-in. I continued to work on plug-in-demo after
the course had ended.

One of the major issues that created complexity for the plug-in-demo was
the need to embed a servlet container. A servlet container is a web server
built to support servlets, which provide dynamic content using the Java
language. JPF needed to be booted before the servlet container, and needed
to run as long as the servlet container was running. The alternative would
be to start JPF each time a user accessed a web page, which is a huge over-
head that would make the application unbearably slow.

Embedding a servlet container within a JPF context created class loader
issues which was difficult to debug . In Java the class loader is responsi-
ble for loading classes when a class instance is requested. The class loader
needs to have access to the description of the classes which the application
needs. This created problems for plug-in-demo because JPF and the servlet

10.5 Making the application extensible 166

container were running within different class loader contexts. Even if JPF
had access to the description of a class it did not mean that the servlet con-
tainer had access. We managed to resolve this, but it was hard to debug
this problems and could possibly create problems in the future.

A sever problem with using JPF was that the application became difficult
to test. The creation of unit tests is considered a important practise for the
creation of stable applications. An unit test is a script that test a single unit
of code, like a class. The test should be done in isolation, the dependencies
the class has on other classes should be satisfied without calling the other
classes. For example if a class depend on data from a database the test
script should not call the database, but provide the data by other means. It
was really difficult to satisfy the dependency a class had on JPF. I wasted a
lot of time trying to find a solution to this without avail.

An equally important testing issue are integration tests. This test the inter-
action between different parts of an application. This kind of tests uses the
actual classes and databases used by the application. In the JPF context this
means testing the plug-ins when they are actually working together. To do
this the mother application and all the plug-ins has to be deployed to their
assigned places, and the JPF framework has to be started. This I had to do
manually by building and deploying all the plug-ins in the plug-in-demo
application, and then start the application. If the application did not start I
had too look in the log files created by the application to try an locate the
bug, fix the bug and build and deploy the application again. This is time
consuming.

In addition to the embedding and testing issues there was issues with inte-
grating the other frameworks used by DHIS 2, and also plug-in-demo, with
JPE. Ispent a lot of time finding and implementing ways for JPF to integrate
with Spring. To this I found solutions I am quite happy with. Spring is like
JPF an all-encompassing framework affecting the architecture of the appli-
cation, and require the developer to get familiar with unfamiliar concepts.

The forth and final challenge I met in building plug-in-demo was the chal-
lenge of using Maven to build the application. It was already decided to
use Maven as build tool for DHIS 2. The responsibility of a build tools is,
among other things, to compile all the source files, link the application to
all of its dependencies and install or deploy the application. Maven also of-
fer support for executing automatic tests. To build an application based on
JPF I had to make a plug-in to Maven. First we used Maven 1, and I made a
reasonably functioning plug-in to that version. Later on the Maven project
finished a total remake of the Maven application called Maven 2. The DHIS
2 project started to use Maven 2. It was more difficult to make a JPF plug-in
for Maven 2 than it had been for Maven 1. The design of Maven 2 had not

10.5 Making the application extensible 167

considered applications of the JPF kind. I managed to make a JPF plug-in
to Maven 2, but it was only a really ugly hack.

Reflecting on how difficult it was for me to make this framework and the
thought of having to decide on where to place extension points, I decided
that it would create more complexity using a pure plug-in framework than
it would give value in better extensibility. Neither did I find a satisfactory
solution to the Maven 2 build issue. There are other approaches for making
an application extensible, which is not so all-encompassing.

There exists many different way of making an application extensible. Some
extensibility is achieved through Object Oriented Programming (OOP) and
even more is achieved through an Inversion of Control (IoC) container which
is the primary function of Spring. OOP offers the possibility of extending
classes and implementing interfaces. If a class is doing almost what you
want it to, but not quite, you can extend the class to make the necessary
changes. The new class can act as its parent class through polymorphism.
It is also possible to make a new implementation of an interface. A class
usually interacts with other classes and when a class is instantiated it also
needs access to instances of the classes its depends on. An IoC container
has the job of inserting this dependencies. By using an IoC container it is
easy to change which implementation of an interface is handed to a class,
or to insert a sub-class of the depended class. Common to this forms of
extensions is that they require some configuration file or source file changes
in the core application.

The existing DHIS 2 application uses OOP and Spring to facilitate exten-
sibility. In addition it provides an Application Programming Interface (API).
This is a handy way to provide extensibility by providing a way for other
application to interact with DHIS 2. Other applications can talk to the busi-
ness layer of DHIS 2. Having an API do not in itself solve the problem of
having visually separate extension to DHIS. An API can be a handy way
for plug-ins to talk to the mother application, however. An API is not as
likely to change as its implementation.

An other way to achieve extensibility is through hooks. Hooks can be im-
plemented as a global array of function pointers or object references. The
extension insert its own function or object into this array, and this array is
iterated through at some point in the core application. I have seen the con-
cept of hooks being used in other web applications, a hook is similar to an
extension point. Hooks are more light weight than a plug-in framework,
therefore it is no need to embed a servlet container. Hooks are easier to
test because they do not require any framework, and the integration and
build problems are history for the same reason. Each time a user request
a web page which access a part of the application providing hooks, all the

10.6 Interaction with other DHIS 2 developers 168

extensions using this hook has to be included. For the mother application
to include the extension some minimal configuration or source file changes
has to be made. Automatic discovery is also possible. The discovery algo-
rithm would have to be run every time a user access web pages with hooks,
however. Each individual hook will most likely be more difficult to imple-
ment, and it will probably require more effort to include an extension of
this sort into the mother application. Figuring out which hooks to provide
will be just as difficult as figuring out which extension pints to provide.

Hopefully the local adaptations in the upcoming version of DHIS can be
done using extensions, in place of forking or visually separate applications
feeding on the DHIS database. This remains to be seen.

10.6 Interaction with other DHIS 2 developers

In FLOSS projects it is an advantage to talk a lot. By talking a lot I could
have made the other DHIS 2 developers more familiar with what I was
doing, and I could have gotten handy tips from the other developers. Dur-
ing the development of plug-in-demo I have not participated much in the
virtual DHIS 2 community. My interaction with other DHIS 2 developers
have been very limited. The development of plug-in-demo was so different
from the DHIS 2 development that I did not expect the other developers to
be interested.

I and Aasen worked together while the course lasted. After that time I
have been on my own. I participated in the planning of the course, as al-
ready mentioned. In the summer after the course had ended a session was
held where the results of the course contributions were presented an eval-
uated. I presented plug-in-demo at this session. I had the impression that
the other participants in this session did not really understand the concepts
embedded in plug-in-demo. Perhaps they did not understand the concepts
because I held a poor presentation, but I interpreted into a confirmation of
my suspicion that a pure plug-in framework for a web application was too
complex.

10.7 Interaction with projects we depended on

I interacted more with the projects we depended on to build plug-in-demo
than I interacted with other developers of DHIS 2. I had interaction with

10.7 Interaction with projects we depended on 169

two external projects; JPF and Maven. In this section I will describe my
interactions with this two projects.

The need to interact with the JPF developer came when I tried to integrate
JPF and Spring. JPF is a small project with just one developer. I down-
loaded the source code of JPF and tried to figure out how to do the integra-
tion. It was not possible to do the integration without making significant
changes. I could not do the integration by extending classes or implement-
ing interfaces, in other words I could only change JPF not extend it. I saw
three routes forward; I could ask the JPF developers to incorporate my code
into the official release by providing a patch, I could make a fork of JPF and
thereby missing out of further releases of JPF or I could ask the JPF devel-
oper to make some architectural changes to JPF to facilitate my extension.

I sent an e-mail to the JPF developer where I explained what I wanted to
do. The JPF developer asked me to send him the code I was working on. I
gave him some suggestions on how to make JPF extensible enough for my
Spring integration code. I sent him the integration code I had made and
two different patches to JPF, one for each of the strategies I suggested. The
JPF developer took my suggestions into consideration and came up with
an architecture quite different from what I had suggested. He had made
quite large architectural changes. Using this new architecture I found it
quite easy to integrate Spring and JPF by extending JPF. Having a concrete
problem I wanted to solve, and some code and suggestions helped me to
convince the JPF developer to change the JPF architecture. The JPF devel-
oper is also the developer of Emersion.

The DHIS 2 project changed from using Maven 1 as its build tool into using
Maven 2. Maven 2 have deep differences from Maven 1, and uses a com-
pletely different architecture for plug-ins. For this reason I had to make a
JPF plug-in for Maven 2 completely from scratch. I had made a JPF plug-
in for Maven 1, but this could not be used. I read documentation on the
Maven web site on how to make plug-ins for Maven 2 and started to code a
JPF plug-in. Once again I came into architectural limitations. The Maven 2
built system had not been designed with application based on a pure plug-
in framework in mind. I spent a lot of time reading documentation, and I
downloaded the Maven 2 source code. I spent a lot of time searching in the
Maven 2 source three to figure out how to make my JPF plug-in.

To get some help on how I could make my JPF plug-in I sent an e-mail to
the Maven 2 user e-mail list. I got no answer on my e-mail. I asked in the
wrong place, I had very peculiar needs for my JPF plug-in. After spending
many ours on coding my JPF plug-in, reading the Maven 2 source code and
testing possible solutions I found a way to bend Maven 2 into building my
plug-in-demo prototype. It was an ugly hack, but it was the best I could

10.7 Interaction with projects we depended on 170

do based on the existing architecture of Maven 2. I made some thoughts
on how to change Maven 2 into supporting a JPF plug-in, and sent in two
feature requests using the issue management system of Maven 2. Now I
got some answers and I explained my need. This two feature requests are
planned to be implemented by the 2.1 release of Maven 2. Having a con-
crete need again helped me in convincing that the changes was necessary.

Part V

Discussion and Conclusion

Chapter 11

Discussion

As described in the introduction of this thesis my research objectives was to
explore FLOSS and how FLOSS are benefiting and can benefit Ethiopia and
developing countries in general, and how FLOSS are benefiting and can
benefit HISP. This discussion is framed within the grand theory of struc-
turation theory and a social informatics perspective on technology. First I
discuss the FLOSS and Ethiopia connection and then I discuss the FLOSS
and HISP connection. Last I will make some general theoretical considera-
tions.

11.1 FLOSS and Ethiopia

In this section I will first make some reflection on the effective use of the
Internet and then of FLOSS in Ethiopia. I will use the term effective use
as described in section 2.3.1. That is, I will look at the physical, digital,
human and social resources available for the effective use of the Internet
and FLOSS. This discussions have to be seen in the light of section 5.7. Last
I will discuss the HISP effort in Ethiopia in the light of my experience from
Tigray, as well as in the light of my discussions about the effective use of
the Internet and FLOSS.

11.1.1 Effective use of the Internet

Currently the physical access to the Internet is limited. The WAN inside
Ethiopia is being actively developed to remedy this, and by connecting to

11.1 FLOSS and Ethiopia 173

the EASSy cable Ethiopia will get a much better connection to the interna-
tional Internet. This is just the physical resource needed for the effective use
of the Internet. There is also a need for relevant content accessible through
the Internet. Ethiopia have quite a few government web pages, but those
I have seen have not been very interesting. More interesting are Ethiopian
newspapers, and weblogs and discussion forums where Ethiopians and
expatriate Ethiopians discuss current political issues. Most of these digi-
tal resources are only available if you know English. There are some web
pages available in Amharic, but for other local languages in Ethiopia there
are barely any content.

The government of Ethiopia have high aspirations and there are quite a
few students enrolling into ICT education. But the PC penetration rate is
low and enrollment into first level education are still low. I don’t think it
is a daring prediction to say that even if the higher strata of the Ethiopian
society will catch up with the developed world there will be a significant
digital divide within Ethiopia. This is typical for developing countries. De-
veloping countries constantly have to catch up, leaving the lower strata of
society behind. A question that is still open is how open the public’s ac-
cess to the Internet will be. There are some disturbing signs of government
censorship in the form of filtering out weblogs with government critical
opinions.

Internet is the blood vein of the large majority of FLOSS projects, it is
through this medium cooperation and contributions to FLOSS project are
being made, and it is through the Internet you can get access to FLOSS
software. Ethiopia’s high aspirations for building infrastructure for Inter-
net connectivity can help in this regard. During my stay in Ethiopia the
network was severely congested and slow. The time required to download
a Linux distribution would be prohibitively high. The current international
Internet connection have very limited bandwidth. To be able to effectively
participate in an international FLOSS community, adequate bandwidth is
important. The connection with the EASSy cable will improve this. The
stability of the improved network and whether increased use will congest
the network remains to bee seen.

The lack of Internet access can prove a major obstacle to the acceptance of
FLOSS among the computer literate people of Ethiopia, as piracy copies of
proprietary software is much more widely available.

11.1 FLOSS and Ethiopia 174

11.1.2 Effective use of FLOSS

Even if work is being done to increase the capacity of the Ethiopian net-
work this is an improvement only accessible to the elite in Ethiopia. This
was also the case in the beginning in USA and Europe until the middle
of the nineties. One big difference, however, is the higher general edu-
cation level and wealth in USA and Europe. This gave a ground for a
hobbyist culture around computers. It is little reason to believe that this
will be a widespread trend in Ethiopia. It is much more difficult to get a
PC for private use and people generally have more pressing needs. To be
able to participate in the FLOSS virtual community you have to have three
things, provided you are interested in participating; access to the Internet,
adequate computer knowledge and time to spend. It is safe to guess that
there is not many people in Ethiopia who have this three things. There is
limited ground for a hobbyist community in Ethiopia, computers are still
prohibitively expensive relative to the average income. It is only in univer-
sities, colleges, government bureaus and in the small computer business
sector it is likely for anybody to use and contribute to FLOSS. Ethiopia is
likely to benefit most from FLOSS in the education sector, and the broader
government sector.

Among the educated elites in the universities and colleges there should in-
deed be grounds for usage of and participation in FLOSS, if the students
are made aware of FLOSS and given the opportunity to experiment with
software. Using thin-client networks like those promoted by Ndiyo and re-
mote administration, it seem feasible to use FLOSS in schools as part of the
e-school program and SchoolNet. This require the education of a group of
expert network administrators who are competent in FLOSS software, with
special emphasis on Linux and the Unix class of operating systems. At the
federal level there is a need for a small group of experts responsible for sup-
port and for making helpful documentation, howtos and tutorials. In each
region groups responsible for going to the physical location of each school
to install and maintain the networks can get help from the core group. In
each school a person with basic computer knowledge can be responsible,
as this person can phone a regional expert or get help through the Internet.
Most maintenance can be done remotely by the regional groups. If there is
a need for making changes to the source code of a particular software, in
order to make it useful in Ethiopia, the core group with help from students,
faculty and professional developers can make the necessary changes. This
changes can be contributed back to the FLOSS project maintaining the soft-
ware.

The limited participation in the FLOSS community by Ethiopia is predom-
inantly focused on translation of software packages. This is a natural place

11.1 FLOSS and Ethiopia 175

to start. In Ethiopia with its federal system where every region can decide
on the working language of the government and schools, the possibility
to translate software into many different languages is a great advantage. If
the government is willing to sponsor such projects it will give ICT educated
people in Ethiopia jobs and save foreign capital, and giving Ethiopia long
term advantages in the form of giving people computer access in local lan-
guages, in the form of making Ethiopia independent of ICT vendors and in
the form of building local ICT capacity.

The building of institutional support for FLOSS have just recently started
in Ethiopia, through the formation of efossnet.org and an Ethiopian LUG,
in additions to the efforts by Dawit Bekele and Daniel Yacob. GFF also
come into this picture, which is mostly an effort by Yacob to localise FLOSS
software. Relevantive had an idea for an information center for FLOSS. By
having such centers where it is possible to get FLOSS software and sup-
port it will be much easier to effectively use FLOSS. You cannot get FLOSS
software from the regular computer marked in Ethiopia. This efforts are
limited to the small minority of computer literate people in Ethiopia, but I
think it is a step in the right direction.

Prime Minister Meles Zenawi have expressed the opinion that there is a
need for a minimal level of training to implement FLOSS solutions, and
that Ethiopia have to wait five to ten years before they can choose. I do
agree that FLOSS solutions, like all solutions, need a minimal level of ed-
ucation, but I think it is better to start right now to build the necessary
capacity. Ethiopia have a chance to choose now when it comes to univer-
sity and college education. The university curriculum should be reviewed
and a narrow focus on proprietary technologies should be removed. My
colleague in Tigray, Kalkedan, was only familiar with Microsoft technol-
ogy after education in Mekelle University. It is also possible to start an
education program to build the capacity to implement and maintain LANs
in Ethiopian schools, it is not necessary to rely on foreign capacity to do
this. Maintaining LANSs in schools is an ongoing effort which should not
be done in one huge effort and later laid to rust.

For Ethiopia to benefit from and contribute to FLOSS there needs to be
a critical mass of people with computer knowledge and familiarity with
FLOSS. This is best addressed through the higher education sector. FLOSS
has its background from academic institutions because it was there people
with the necessary interest, knowledge, equipment and time were found.
This is even truer for Ethiopia since the general population is much poorer.
The Ethiopian government should also play a major role by sponsoring
translation efforts and building capacity to support the effective use of the
planned SchoolNet and WeredaNet programs. If this capacity is not rele-

11.1 FLOSS and Ethiopia 176

vant for a job in the developed world it is only an advantage that will limit
“brain-drain” from Ethiopia.

MS Office and MS Windows was available on all computers I saw in Ethiopia,
with or without a license. Software piracy is common in Ethiopia and you
can get expensive proprietary software for just a few dollars. The lower
cost of FLOSS is currently not an argument for the regular private com-
puter user. The government and business sectors usually need to be more
concerned about having licenses for their software, especially if they are to
comply with the TRIPS agreement.

11.1.3 HISP, Tigray and Ethiopia

The planned improvements of the Ethiopian WAN will make it easier for
the Ethiopian HISP node to collaborate in the HISP network. It will also
make it easier for the HISP people in the field to tap into the overall HISP
network. The awareness of FLOSS is on the rising in Ethiopia. HISP-
Ethiopia have the opportunity to show that FLOSS can be feasible in Ethiopia.

I did not manage to make a usable plug-in framework for DHIS 2 within
my time constrains, but DHIS 2 still is much more modularised than DHIS
1.x. This will avoid the problem of making an incompatible fork to support
ICD codes. Now the necessary adaptions done to the DHIS core can be
sent upstream to the central HISP development team and incorporated in
the main DHIS releases, with less likelihood of the changes making prob-
lems for the other users of DHIS. DHIS 2 is neither dependent on the client
having specific versions of MS Office and MS Windows, all the necessary
software can be bundled on a CD. Neither is it necessary with a costly pro-
prietary program to make an installer. This solves the problems we had in
Tigray with installation.

The HISP effort in Ethiopia can be a model for how it is possible for Ethiopia
to benefit from FLOSS. HISP had, during my stay there, efforts going on in
five regions. We had a team in each region implementing DHIS in the re-
gion and in some pilot districts. If this is possible for HISP, it is also possible
for the education sector in Ethiopia. Communication between the different
HISP teams was limited, a better computer network and a web page with
documentation and an e-mail list would improve this. We could not im-
prove the network, but we could have made a web page and e-mail list. Ev-
eryone in Ethiopia was busy with what they where doing in the regions and
had no time to build a central node in Ethiopia. At the time of writing HISP
Ethiopia has built a web site (http://www.aau.edu.et/faculties/dis/site/hisp/).

http://www.aau.edu.et/faculties/dis/site/hisp/

11.1 FLOSS and Ethiopia 177

In Tigray we had to “compete” against an installed base. There already
existed a computerised system used for data capture and analysis, namely
EPIl-info. As noted in the comparison between EPI-info and DHIS in section
8.3 there are important design differences between this two systems. EPI-
info is designed for surveying possible decease outbreaks and is good for
non-routine data collection where the data that need to be collected varies
between each case. DHIS on the other hand is designed to gather routine
data from the primary health system.

I will say that DHIS in Tigray is best suited for routine data. DHIS will
make reporting and data analysis easier as it offers an unified system for
routine data collection. Data can easily be exported, sent and imported at
the unit above. Data analysis can easily be done for any number of month
and aggregated at any level in the hierarchy. If you want data for a district
the data from the primary health units in that districts are aggregated to-
gether. Epi-info on the other hand can be better for non-routine data collec-
tion which the DPC department might need to make. Epi-info is designed
with decease prevention and control in mind. DHIS 1.3 do not support
weekly reporting intervals used by the DPC department, but later versions
do. We only adapted DHIS 1.3 in Tigray, so EPI-info is better for such re-
ports at the current time. DHIS and EPI-info fulfill different needs and are
not mutually exclusive.

The DHIS core implements structure and processes common among rou-
tine health information systems. DHIS is designed to be relatively easy to
adapt to different health systems by facilitating the process of technology
translation. By isolating many complex implementation issues in the stable
core a lot of the development and maintenance burden is shared with HISP
and other countries using DHIS. The development of DHIS is a community
process which makes it more likely that the software will stay in sync with
changing demands, as opposed to an in-house developed IS only relevant
for a specific country. By using the FLOSS licensed DHIS each country do
not have to reinvent the “wheel”, get a “wheel” as a donation or pay some-
body to reinvent the “wheel”.

The Ethiopian HISP node have been relative active in DHIS 2 development.
The ICD extension have been incorporated into DHIS 1.4, and work to im-
plement an ICD extension for DHIS 2 is being done. Tigray have not started
to use DHIS 1.3 for routing data collection in the region as we hoped for,
but the Tigray health bureau is interested in testing DHIS 2.

11.2 FLOSS and HISP 178

11.2 FLOSS and HISP

A key principle for HISP is that DHIS should be licensed with a FLOSS
license. DHIS 1.x is in fact licensed under the GNU LGPL. This is not be-
cause HISP is affiliated with the hacker culture or the FLOSS community.
The decision to make HISP FLOSS is like the decision to make DHIS 1.x in
MS Access, based on pragmatic reasons. This reasons and the similarities
and differences between how DHIS is developed compared to the commu-
nity model of development common for many FLOSS project, is what I will
explore in this section.

DHIS being licensed under a FLOSS license gives clear advantages to the
user. Unlike when negotiating to make a deal with a proprietary vendor the
health authorities do not incur any financial risk by testing DHIS. HISP will
not take the health authorities to court for not having enough licenses or for
breaking contracts agreements relating to DHIS. The user can copy the soft-
ware to as many computer as they wish, and if the need should arise they
can even modify it. Modifying DHIS can make further updates of DHIS dif-
ficult if the changes breaks compatibility with the official branch of DHIS.
Modifying DHIS in this way will effectively make a fork. Users outside the
HISP network of students and developers will rarely make changes of this
sort.

In the process of translating DHIS to a new context, developers sometimes
need to look into the source code to make necessary changes. If DHIS was
proprietary software the developers working on translating DHIS to a new
country would have to sign NDAs, and this would have to happen within
the legal framework of each country. HISP would have to hire lawyers.
DHIS being FLOSS makes it possible for the people doing the adoptions
of DHIS to a new country to make rapid changes based on user demands,
making DHIS more acceptable to potential users. FLOSS is a prerequisite
for informal collaboration across national and organisational boundaries,
with a minimum of legal obstacles. The decision to base a FLOSS program
like DHIS 1.x on a proprietary platform like MS Office, might seem a bit
contradictory. Both the decision to license DHIS 1.x with a FLOSS license
and the decision on build it using MS Access was based on pragmatic con-
sideration seeming obvious at the time.

11.2.1 HISP and the conventional FLOSS community

The HISP community is predominantly made up of health workers and
academics and is not affiliated with the hacker culture. It is important to

11.2 FLOSS and HISP 179

note that the overall goal of HISP is to empower the poor and marginalised.
In this regard FLOSS is seen as a mean rather than an end in it self. FLOSS,
however, lends itself naturally to a project with a goal to use IS as a tool
for empowerment. Free software being, as it usually is, free as in “gratis”
serves the poor, and free software being free as in “freedom” serves the
marginalised. FLOSS serves HISP well, especially because HISP is not a
profit seeking enterprise, and is based on what in the FLOSS context is
called a community model with many more or less independent actors.

Unlike Linux which is based on the POSIX standard it is very hard to give
an exact requirement specification for DHIS, so the participation of health
workers are essential. Health workers are users and cannot be expected to
contribute directly with bug fixes and patches. Health workers have to get
guidance formulating what they want, and in what is technically reason-
able. This put more challenge on the design of the system. There is a clear
separation of the actual users of the systems and the core programmers
making the system. Between the actual users and the core programmers of
DHIS are the people who do the translation of DHIS, this people configure
the system and do other forms of adaptations of the software. The transla-
tors plays a mediating role between the actual users and the core program-
mers. Within the HISP network the translators are the closest we come to
user-programmers. The translators do more than translating language. The
translators translate all aspects of the software that are necessary to make
it useful in a particular context.

Members in other FLOSS communities tend to be more technically knowl-
edgeable. In the later years FLOSS have crawled out of the hacker com-
munity and the academic computer science communities. Hackers have
intrinsic interest in exploring programmable systems and can cope with
software that is not particularly user friendly, and can change the software
themselves if they are not happy with it. For enterprise ISs like DHIS with
an user base consisting of people who do not care about programming
and the inner workings of a computer, the actual users are not program-
mer. DHIS is not unique in this regard, FLOSS is used in many differ-
ent kinds of enterprise systems. It make sense to base a new systems on
proved FLOSS libraries, like the Spring framework and WebWork in the
Java context. In this context the users of the FLOSS libraries becomes the
user-programmers, not the users of the enterprise system. In the DHIS 2
context there is a group of core programmers working with DHIS 2. They
base the development on a number of FLOSS libraries to make the devel-
opment of DHIS 2 easier. DHIS 2 is a system that is meant to be used in
many different context, so in addition to the core developers we have the
translators. The core developers develop the stable core, and the transla-
tors adapt the flexible exterior. The actual users of the system do not have

11.2 FLOSS and HISP 180

any programming skills, so for the translators the social perspective is most
important. An illustration of this can be seen in Figure 11.1.

Core framework Core DHIS DHIS Actual users

programmers programmers translators

Programmer User ‘
Technical Social

Figure 11.1: The user-programmers within the DHIS context

Many of the academics in the HISP community are people with no passion
for programming. This people concern themselves more with the social
than the technical aspects of IS, and are more likely to act as translators
interacting with the actual users of the system. I worked as a translator
in Tigray, but because I have a more technical inclination I concentrated
more on the DHIS software than the organisational context. Even within
the different boxes in Figure 11.1 the different actors can have a varying
emphasis on the social or on the technical aspects.

In general there are very few people from developing countries participat-
ing in FLOSS development. HISP is an exception to this. DHIS 1.x was and
still is being developed by a team in South Africa. Most of the contributors
to DHIS 2 are from Norway, but there are more contributors from devel-
oping countries like Vietnam, India and Ethiopia than what is common in
other FLOSS projects. More contributions will most likely come from de-
veloping countries when DHIS 2 gets into production.

HISP is also more than a community around a program, it is more impor-
tantly a community built around a common interest in improving health
services by proper information management. FLOSS is not an end in it
self for HISP, it is an important meant to improve health service for the
marginalised. However, in the following two section I will concentrate on
the motivations to participate in DHIS 2 development and the management
of the DHIS 2 development.

Motivation

The ideal developer in a FLOSS project would be a user-programmer who
is a competent programmer and the actual user of the system. This devel-

11.2 FLOSS and HISP 181

oper would be intrinsically motivated to develop the system, have all the
time in the world and demand no pay. To have such developers would be
unlikely for any project. Here I will look into how developers can be mo-
tivated to participate, and how developers are motivated. I will base this
discussion on both of my case studies.

My motives for starting on this thesis and for conducting the two case stud-
ies was for once that I wanted to take my degree. This is the cornerstone
motivational factor within HISP, as HISP is a research network with mas-
ter students, PhD students and faculty members. Most of the effort done
within HISP is done by researchers doing action research. The downside to
this motivation is that it is an extrinsic motivation. Participation in DHIS 2
development is within this frame only a mean to get a degree.

The course held at UiO have the same problem because participation through
this course can easily be seen as only a mean to pass the course. Some of
the student taking the course can become intrinsically interested in the de-
velopment of DHIS 2, however. The development of the DHIS 2 core is
likely to attract more technically inclined people, or hacker if you will. The
DHIS 2 core is developed with a number of interesting frameworks. The
frameworks that DHIS 2 builds upon, the tools used to support the devel-
opment and the development practises used, this are all very handy to have
learned for a future work situation. The primary motivation to participate
in the development of DHIS 2 is to enhance development skills. The stu-
dents participating in DHIS 2 development can say they have experience
with relevant technologies when applying for a job. People participating in
the development of DHIS 2 do not need to be interested in health informa-
tion per se.

An other important motivation for contributing to DHIS 2 development is
work related needs. The translators out in the field needs to fix a bug or
needs to make specific changes to the core. In Ethiopia the ICD extension
to DHIS 1.3 was made for that reason, and for that reason work is being
done in Ethiopia to make the same extension for DHIS 2. Demands met by
the translators in different countries, will certainly also in the future make
it necessary to make extensions or changes to the core. As DHIS 2 is set
into production in more countries and regions this will become a valuable
source of feedback and contributions.

My second motivation to write this thesis was because I wanted to look into
how FLOSS can benefit developing countries. Like most of the community
based FLOSS projects, HISP is not seeking profit. I guess that it is more
rewarding to participate voluntarily in making FLOSS software like DHIS
better, than to do the same for a company seeking profit. The idealistic
foundation of HISP and the value of empowering the marginalised in the

11.2 FLOSS and HISP 182

developing world was important for me, it was the reason I chose to write
a master thesis withing the HISP network. I am more technically inclined
and considered writing a master thesis relating to the Distributed Multimedia
Systems (DMS) group at UiO, but it felt more valuable to write my thesis
within the HISP network.

HISP do pay people to do development and it is not unlikely that some con-
tributions can come from the organisations using the systems when DHIS 2
is set into production. The health authorities in the different countries can
heir people to make changes to DHIS 2, or they can give HISP money to
heir people. In this instances the paycheck is the primary motivation.

Summing up I think HISP is most likely to motivate people to participate
in the development of DHIS 2 through giving students a chance to improve
skills, by work-related needs in the field, by idealism and the paycheck.

Management

To harvest contribution to a project it is important how the project is man-
aged. In this section I will look at the eight points in section 5.4 and how
this points relates to the management of the DHIS 2 development. I will
not restrict the discussion to this points, but will use them as a framework
for the discussion.

The first point is to make it interesting and make sure it happens. The
project leadership should act as motivators and encourage contributions. It
is important that the people who contribute feels that their efforts are ap-
preciated. Patches and suggestions should be seriously considered. The
DHIS 2 project is a little bit different from conventional FLOSS projects
since not all contributors are strictly voluntary, many contributors takes the
INF5750 course where contributions are mandatory and many are master
students who have to contribute to get their degree. The students taking
INF5750 are not strictly free to what and how much to contribute. The
course is important as a base for recruitment of master students and later
voluntary contributors. Similar courses can and are being held at other
universities in the HISP network.

Closely related to motivation is the concept of “scratching an itch”. Health
information is unlikely to be a personal “itch” for a programmer, so contri-
butions based on meeting a need in the developers immediate environment
is unlikely. There is other kinds of “itches” that can be “scratched” in the
DHIS 2 context. There can be an “itch” to learn to be a better programmer
and how to use interesting frameworks. This can help a developer to posi-
tion himself in a competitive job marked. In other words the “itches” that

11.2 FLOSS and HISP 183

can be “scratched” comes from the motivations mentioned in the previous
section.

DHIS is designed to avoid having to reinvent the wheel in each country and
region DHIS is implemented. The stable core of DHIS contains features
relevant across health systems, and the flexible exterior is designed to be
relatively easy to change. DHIS 2 also use many FLOSS Java libraries and
frameworks to ease the development. In addition to the core framework
and development tools, DHIS 2 uses libraries for report generation and
data analysis. Sometimes, however, it can make sense to implement some
functionality directly into the application without using external libraries.
That is if you only need a small fraction of the library’s functionality. It
can become difficult to manage all the external libraries, each which have
its own update life-cycle. It is important to not drown the application in
frameworks, this was the primary reason I did not recommend using a
pure plug-in framework, at least not what I managed to make, for DHIS
2. The framework added more complexity than it added value, which is
exactly what EJB is frequently criticised for.

There have also been some efforts at solving problems through parallel
work processes. In connection with DHIS 2 some research and develop-
ment projects have been conducted apart from the DHIS 2 development.
My experimentation with a plug-in framework is one example of this. It
make sense to spin off some experimental sub-projects for possible later in-
clusion in the DHIS 2 code. This sub-project produces more or less throw-
away prototypes which can be amended for inclusion in DHIS 2.

To attract contributors and to facilitate the work of the translators, it is im-
portant that the entry barrier to effectively use, configure and change DHIS
2 is as low as possible. A sensible interface for configuring the flexible ex-
terior of DHIS 2 is important. For more complex changes and extensions it
is important with well documented and understandable code. No matter
how good the code is written and no matter how good it is documented,
it is not easy to read code. There should be documentation in a more hu-
man readable form. There should be documentation for the developers of
the DHIS 2 core, for extensions developers, for the translators and for the
actual users. A potential DHIS 2 core developer need to understand the
architecture of DHIS 2, and the concepts and abstractions used. A poten-
tial DHIS 2 core developer also need to understand the frameworks and
libraries used. A potential extension developer need to know how to pro-
ceed in making an extensions. The translators in the field need to know the
interface for configuration, how to submit bug reports and feature requests.
The users need to know how to input data, produce reports and how to do
data analysis. Documentation for, and perhaps by, these categories of DHIS

11.2 FLOSS and HISP 184

2 participants should be made.

Currently DHIS 2 do not benefit from massive peer-review. As DHIS 2 is set
into more widespread use I think we will see more bug reports and feature
requests from the DHIS 2 translators. This will also create a greater need for
support. A lot of support can be given through good documentation, but
this is often not enough. To release the core developers from the support
burden, there should be mechanisms in place to help the users (the trans-
lators and actual users) help each other. This can be facilitated through a
user e-mail lists, a support discussion forum, a IRC chat channel or similar
means. The advantage of an archived e-mail list or discussion forum is that
the support answer get stored, then a user facing similar problems do not
have to ask.

DHIS 2 is dependent on other projects. DHIS 2 can function as a proxy for
bug reports from its users. Some of the bug reports and feature requests
can be related to the libraries and frameworks DHIS 2 depends on. The
DHIS 2 developers can make a fix to a bug, or make a patch implementing
changes necessary to support a feature request. This can be sent upstream
to the relevant library or framework project. The DHIS 2 developers do not
need to fix a bug or make a patch themselves. The bug report or feature
request can be forwarded to the relevant project. This is similar to the way
Linux distributions function as proxies for the Linux kernel and many other
pieces of software.

The DHIS 2 project have still not finished a full release of DHIS 2. Up until
the time of the full release intermediary milestone releases are made. For
each milestone more functionality are implemented. After the full release
I think it would make sense to divide the code into two branches. One
unstable development branch with cutting edge features, and one stable
branch which is debugged and where only features which do not require
major code changes and do not break compatibility with extensions, is in-
corporated. This is similar to the way the Linux kernel is developed. It is a
compromise between releasing early and often, and having stable software
for production.

11.2.2 Comparing DHIS 1.x and DHIS 2 development

Both DHIS 1.x and DHIS 2 are FLOSS and are conceptually the same ap-
plication. The major differences between this two different strains of the
DHIS software are in how they are developed and on which platform they
are implemented. In this section I am going to look at the advantages and

11.2 FLOSS and HISP 185

disadvantages of the different development styles and platforms used by
this two different strains of DHIS.

The development of the DHIS 1.x strain has since it’s beginning predom-
inantly been done by a development team in South Africa. The develop-
ment style of DHIS 1.x is that of building a “cathedral”. It is done by a
tightly knit team. The design of DHIS 1.x is most definitely done in a par-
ticipatory manner, but the development is not. You can say that DHIS 1.x
has been developed using participatory design, but not participatory de-
velopment. The software made in South Africa is transferred to the other
nodes in the HISP network, where DHIS 1.x is translated to the local con-
text. The translators give feedback to the development team making the
DHIS 1.x core. It is only the core team that really understands the software,
which puts a lot of support pressure on this team, and especially its leader
Calle Hedberg.

The development of DHIS 2 is built around a community model. The de-
sign of DHIS 2 is for the most part based on DHIS 1.4. Years of PD ex-
perience is inscribed into DHIS 1.4. The PD approach to design is just as
important to DHIS 2. The difference is that by basing the development of
DHIS 2 on a community model it becomes participatory development as
well as participatory design. Section 2.2.2 discusses the limits of PD. Many
of these limits are relevant for any participatory approaches, you need peo-
ple with sufficient time, skill and motivation. The difference is that our pool
of potential participation in DHIS 2 development is not limited to the actual
users of the software, and is not limited by any organisational boundary.

In Ethiopia we had to make changes to the stable core as well as to the
flexible exterior of DHIS 1.3. In a way this was participatory development,
but it was impossible to incorporate the changes into the official releases
of DHIS 1.x. This made it impossible for the Ethiopian DHIS 1.3 to ben-
efit from minor releases coming from South Africa. We where stuck with
version 1.3.0.17. This was done due to the limitations in the DHIS 1.x archi-
tecture and platform. We could have transferred the changes made to this
version to new minor releases, but this would place a quite large mainte-
nance burden on the Ethiopian HISP team.

The limitations of MS Access, particularly in the area of modularisation,
have given rise to a number of application separated from the DHIS 1.x
user interface. This applications are implemented on other platforms, like
Java or C++, and have its own user interface and business logic. This appli-
cations are linked to DHIS through the use of the database. The reason for
making visually separate applications is to avoid making changes to DHIS
that makes upgrading to new DHIS versions difficult. In Ethiopia changes
to DHIS 1.3 were done through making direct changes to DHIS 1.3, effec-

11.2 FLOSS and HISP 186

tively making the Ethiopian DHIS 1.3 a fork. It is extremely difficult to base
a distributed development process on MS Access. MS Access is definite not
designed with that in mind.

A great advantage with MS Access is that it is quite easy to learn. It is not
necessarily more easy to learn for the actual users of DHIS, but it is more
easy to learn for the people translating the software to a local context. Both
DHIS 1.x and DHIS 2 offers visual configuration for many of the neces-
sary adaptations of DHIS, like the organisational hierarchy and the data
elements. There can be times, however, when this is not enough. I did not
have any prior knowledge of MS Access before I went to Ethiopia, but I
had no greater problems learning enough of MS Access to make necessary
changes. It is also more common for developers in developing countries to
be familiar with MS Access, than it is to be familiar with Java. It is highly
unlikely that a local developer, like Kalkedan in Tigray, would be famil-
iar with Spring, Hibernate, WebWork 2 and the other frameworks used by
DHIS 2. T think DHIS 2 will place more demands on the translators if it be-
comes necessary to make changed not possible through the configuration
interface.

MS Access is also great for making prototypes, mostly throwaway proto-
types. For DHIS 1.x MS Access also served as a platform for making an
evolutionary prototype. This enabled HISP to come up with a working
solution relatively fast. Having a working solution is in my opinion the
greatest argument any IS project could have. This helped HISP in the com-
petition with other more ambitious projects in South Africa.

MS Access being proprietary software can in principle be seen as a disad-
vantage. Developers need to have it in order to contribute, the translators
need to have it in order to translate the software and the users need to have
it in order to use it. I did not have MS Office before I went to Ethiopia and
I did not want to buy a license. Fortunately I got MS Office from my in-
stitute. MS Office is so ubiquitous in the developing countries where HISP
operate, so this is not an important limitation. A more important limitation
with the proprietary nature of MS Office is that HISP cannot legally bundle
a specific version of MS Office together with DHIS. Therefore HISP have to
support many different version of MS Office, and hope the client have one
of the supported versions.

The greatest advantage with DHIS 2 is that it is possible to develop it using
a community model. In my opinion this is in it self a sufficiently good argu-
ment to make a shift from MS Access to Java, or any other open platforms.
HISP is after all a distributed community and doing distributed develop-
ment have the potential of harvesting the collective effort and intellect of
the HISP community. Independent of the DHIS 2 software I think it is a

11.2 FLOSS and HISP 187

great advantage just having a community web site, which is the case for
HISP now. Documentation and support can also be done in a distributed
collaborative manner.

In DHIS 2 the “onion architecture” of DHIS 1.x is changed into an object
oriented three tire architecture, using Spring to manage the dependencies
between the objects. This architecture is more flexible and able to grow
and be changed in the future. DHIS 2 has a higher barrier for people un-
familiar with the technology, but it has a lower barrier into understanding
the code sufficiently to become a core developer because of a more sensible
architecture.

Changing the flexible exterior of DHIS is done through configuration, but
sometime it is necessary to change the DHIS core as well. The modulari-
sation of DHIS 2 makes the stable core more flexible without making it fall
apart through forking into many incompatible versions. Both the use of
OOP and the use of Spring makes DHIS 2 more extensible. It is possible to
make local changes and have it integrated with each new minor release of
DHIS 2. Currently there are no standard way to make extensions to DHIS
2, however. The use of OOP and Spring makes the applications generally
more flexible, but it give no clear route ahead to how a specific extensions,
like an ICD extension, should be made. It is possible to extend classes,
implement interfaces and change the Spring bean factory to use different
classes as dependencies. DHIS 2 still lacks a general architecture for exten-
sions, however.

DHIS 2 also offers an API which other applications can use. In DHIS 1.x
other applications could only interface with DHIS through the data base,
in DHIS 2 other applications can interface with the business layer. This
applications will still be visually separate from DHIS 2 and are therefore
not extensions, but more like other applications talking to DHIS 2. Using
an API will still be handy for possible future extensions, since an APl is less
likely to change than the implementation.

In conclusion to the question of extensibility of DHIS 2 I will say that it
is still possible to make the core of DHIS 2 more extensible. Using a pure
plug-in framework is not the route to go, but it is possible to use less in-
vasive methods, which do not require embedding a java servlet container
in the plug-in framework. Using hooks is one route to go. The ICD mod-
ule which the Ethiopian HISP node is making is excellent for testing the
extensibility of the current DHIS 2. Can this be done without creating a de-
pendency on a specific minor version of DHIS 2? Different ways to achieve
extensibility should be experimented with in the future, and documenta-
tion on how to proceed making an extension should be made.

11.2 FLOSS and HISP 188

11.2.3 Comparing the Tigray and DHIS 2 cases

The Tigray case and the DHIS 2 case are very different primarily because
I performed different roles in fairly different settings. In both settings I
did some programming, but at very different stages in the development.
In this section I am going to compare the role I played in Tigray with the
role I played in the DHIS 2 development. I am also going to compare the
different context in which I operated in the two cases.

In Tigray I worked as a DHIS translator, translating DHIS to the context of
the Tigray health system. In this case the social aspects of IS was the most
important and took the most time. First we had to negotiate with the Tigray
health bureau to set up a client-system infrastructure. This involved a lot
of social brokering. In this setting the DHIS software was secondary to the
general goal of improving information management. The most important
artifact we could offer Tigray was DHIS, but we could also offer help in de-
veloping an EDS based on an action oriented approach. I personally could
not offer much help in developing an EDS, but the other team members
had an more extensive information management background than I had.

For various reasons which are better explained by (Damitew and Gebreyesus 2005),
there was a large number of data elements being reported in Tigray. Differ-
ent departments demanded different reports, and the data elements often
overlapped between the reports. It is my opinion that the work we did in
Tigray can be justified solely by getting the different departments to work
on an EDS. By bringing attention to the data being gathered, redundancy
in reporting can hopefully be reduced, and less and more useful data can
be gathered. This is an example of a situation where less is more. As we
saw in section 8.4 the team appointed to develop an EDS did not actually
come up with a minimal data set, but it was a reduction compared to the
number of data elements that was currently in use.

The technical aspects was also important. We had to configure DHIS to be
useful in the Tigray context and import some data from EPI-info to show
that DHIS was a viable system. If we did not have the DHIS software we
would not have much to put on the table in our negotiation with the bu-
reau. I dedicated my time predominantly to configuring DHIS. Through
this work I became familiar with the strengths and weaknesses of DHIS
1.3. In Tigray we was essentially cut of from the rest of the HISP commu-
nity because of the slow and unreliable Internet connection. In this case a
supportive virtual community would not help much, we could, after all,
not access a virtual HISP community. I had downloaded a lot of documen-
tation for Python allowing me to make the EPI-info to DHIS transfer script.
Documentation for MS Access and VBA was also on my hard disk. To en-

11.2 FLOSS and HISP 189

able DHIS translators to work in places with no useful Internet connection,
documentation for DHIS 2 should also be available in a form that can be
downloaded to the local hard drive.

During my stay in Addis Ababa I had an usable Internet connection, and
here I missed having contact with a virtual community accessible by other
means than e-mail. I had no idea on who to contact about my GIS ques-
tions, and sending e-mails back and forth takes time. For the translators
out in the field it would be helpful to have a responsive virtual community
to help in the configuration of DHIS, and perhaps also to discuss various
dilemmas of a more social nature. There are people in the HISP commu-
nity who have a lot of experience from negotiating agreements with health
authorities. There are also people with experience from conducting DHIS
training sessions. In Tigray I had to make all the training material my-
self. missed having access to training material. Training sessions has been
conducted in every country in the HISP network. There must be a lot of
material already made!. The context for training varies but DHIS is the
same, so training material made in other context can still be useful.

In the DHIS 2 case I worked as a developer of the DHIS 2 core, not on
the core itself but on an experimental sub-project. This role challenged
my technical skills more than my social skills. The challenges I met in the
Tigray case was predominantly social in nature. I was a stranger in a for-
eign county. I did not know the local language or culture, and I was not
used to the local bacterias. In the DHIS 2 case the challenges was technical.
I started out with a hope to make a plug-in framework for DHIS 2. This
turned out to be a serious technical challenge.

The DHIS 2 case I conducted in Norway. A much better Internet connec-
tion and familiar surroundings made it much easier to work with software
development. When I started on the DHIS 2 case a community web site
was in the process of being made. This web site gave HISP a more clear
point of presence on the Internet, and in a way this has made HISP more
“real”. What really makes HISP real is the people involved in the process
of structuration of HISP, but the web site makes the sense of structure more
clear. Over the years there has been made many small applications in the
process of translating DHIS 1.x to a new context. Most likely an ecosystem
of related applications will be built around DHIS 2 as well. It would make
sense for the HISP web site to offer hosting services for this applications as
well.

In the DHIS 2 case I did not have any contact with any translators or ac-
tual users. The DHIS 2 development was in its infancy and the core design

! At the South African HISP web site (http://www.hisp.org/) training material for DHIS 1.x
is now available

http://www.hisp.org/

11.2 FLOSS and HISP 190

was taken from DHIS 1.4. Unfortunately the plug-in framework project I
worked with became isolated. The technical challenges became too much
for me to handle within my time constraints. In retrospect I realise I had a
too grand vision for the plug-in framework. There did not exist any plug-
in framework that could meet our vision of a pure plug-in framework for
web applications. We made a throwaway prototype as a proof of concept,
but making DHIS 2 into a pure plug-in application would add a lot of com-
plexity to the coding of DHIS 2. Making a pure plug-in application involves
a way of thinking unfamiliar to most programmers. I realise that I should
have involved the other modules more into a discussion about how to make
DHIS 2 extensible. The technical challenges I meet overshadowed the need
to discuss how to provide extension points and where in the other modules
this extension points should be. Extensibility is something that involves all
the modules of DHIS 2. I should have focused less on making a plug-in
framework and more on discussing with the other groups on making their
modules extensible with the frameworks already in use.

DHIS 2 is currently being tested in India, Vietnam and Ethiopia. It will
be interesting to see the experiences the translators in this counties have
with configuring and extending DHIS 2. MS Access is well known among
moderately competent developers in developing countries. In Ethiopia we
hired Kalkedan to maintain and support DHIS for one year at the Tigray
health bureau. He had tree years education from Mekelle University, where
he had learned Visual C++, VB and MS Office. He had no knowledge of
Java, and certainly not of Spring, Hibernate and WebWork. So the question
I ask myself is: Would Kalkedan be able to configure and extend DHIS
2? 1 think he would be able to configure DHIS 2. Using an interface for
visual configuration is not that difficult. If he, however, had to change or
extend the code I think he would have a hard time. For DHIS 2, I think
it is important to have an active virtual community where translators and
the organisations using DHIS 2 can get support. It is important that the
organisations where DHIS 2 are used are able to effectively use DHIS 2
without direct help from outsiders, except the help provided through the
virtual community. The organisations using DHIS 2 should not perceive
themselves as consumers of DHIS 2, but as collaborators in making a great
application for information management in the primary health system.

In the Tigray case I worked as an DHIS translators. In the DHIS 2 case I
worked as a DHIS 2 core developer. It has been a tremendous challenge to
perform both these roles. I had to learn social science theory to perform my
work as an DHIS translator and in order to write about the Tigray case. In
order to perform my role as a core programmer I had to have programming
skills, and I had to learn a lot of new technologies. It would be advisable to
let new master student perform just on of these roles. The technical inclined

11.3 Theoretical considerations 191

can work with the DHIS core and the social inclined can work as DHIS
translators. Dependent on the problem definition of the thesis the master
student plans to write one or both of these roles can be performed.

11.3 Theoretical considerations

In this section I am going to make some theoretical reflections based on
conventional IS theory and FLOSS. First I will use ST to reflect on the for-
mation and social practices of the FLOSS community. Then I will reflect on
PD, HISP and FLOSS and lastly I will make some reflection about technol-
ogy translation.

11.3.1 Structuration of FLOSS

In chapter 4 I gave a historical narrative to show how the social practices
of FLOSS have changed and replicated over time and space. The practice
of code sharing is not a newly invented practice, but has been present since
the dawn of computing. As long as there was no business interest in selling
software the natural thing to do was to share code. The only reason to keep
code secret is if it enable you to sell software, or if it gives you a competitive
advantage to keep a piece of code secret.

The social practice of sharing code is the most important social practice
in the FLOSS community. Individual actors have different motivations to
do this. Some do it for moral reasons because they have the opinion that
code should be free. Others do it because of more pragmatic reasons. It is
my opinion that the true test of whether source code is shared for moral
reasons, is if there is a business opportunity in keeping the code secret, but
where the developer chooses to share the code anyway.

The practice of code sharing based on pragmatic reasons have emerged in
places where there are no interest or no opportunity in selling software,
and where the network effect of sharing code is greater than the competi-
tive advantage it gives to keep the code secret. In the case of Unix, AT&T
had no opportunity to sell software (not until the 1980s anyway). The aca-
demic computer science research community quickly adopted Unix as an
experimental toy. This community got its money from doing research, not
from selling software. Sharing information is a basic value in the academic
research community that enable researcher to “stand on the shoulders of
giants”. The academic community do not always practice this value, often
pride and glory seeking gets in the way. The Unix users did not share code

11.3 Theoretical considerations 192

for any moral reason, but because the network effect of sharing was that
you got access to much more software than you provided.

An other important lesson to draw from the Unix history is that it is more
important to make something work, than it is to implement a grand vision.
The most important reason Multics did not succeed was that it sought to
implement a grand vision, to complex for the state of technology at the
time. Unix became a success not because it was a technical master peace,
but because it worked and was available. Most important, the source was
available. When you have something that work you can attract the atten-
tion of people willing to contribute if you are willing to share. This was
what Unix did. Even if the first instant of the software is simple, a more
complex and modular design will emerge if it attract contributions from
more than a few programmers. The modular design will not emerge spon-
taneously, but to manage the contributions and to keep the interest up it is
forced into existence.

Linus Torvalds did not make Linux because he was interested in selling it,
but because he wanted an operating system he could experiment with. The
tirst version of Linux was to simple to sell anyway. Linux would not have
been possible without many people contributing. The more morally moti-
vated FSF worked on the Hurd kernel. The Hurd kernel did not succeed
because it did not deliver, being based on a too ambitious micro kernel de-
sign. The Minix kernel was available, but Tanenbaum was not interested in
making it into anything more than a learning tool. Tanenbaum did not step
up to manage all the contributions. Linux was available and Torvalds did
step up to the challenge. Linux have, from its humble beginning, evolved
into a kernel with a modular design facilitating contributions.

In the TCP/IP and OSI-stack case we see this story again. One grand vision,
the OSI standard, failed because it was too complicated. Even if it was
technically superior to TCP/IP it was not a working solution. TCP/IP was
working and had been working for some years. Over the years the TCP/IP
protocol stack have evolved and other protocols have been made at the
application layer to implement some of the functionality present in the OSI
standard. On the other hand, if TCP/IP was too simplistic it would not
have attracted as large a following. TCP/IP did replace the more simplistic
UUCP protocol. UUCP is much more cumbersome to use compared to
TCP/IP because of its simplicity.

My opinion is that the Unix and Linux stories illustrates the importance
of modular design and communicative code in distributed development
common in FLOSS projects. Modular design and distributed development
is not limited to FLOSS project, but in FLOSS project of some size it is a
necessity. To build a modular application with easily understandable code

11.3 Theoretical considerations 193

require more work up front, but in the long run it is a great assess. The cost
of maintaining software is usually much higher than the cost of first mak-
ing the software, and it is easier to maintain good quality code. The Unix,
Linux and Internet protocol stories also show that it is more important to
have a simple working solution than to have a grand vision. There is a
conflict of interest between modular design and to have a simple working
solution. Modular design require more work up front. By designing a sys-
tem with too much extensibility you risk never being able to deliver. This
was the case for the Hurd kernel and for my plug-in framework. A balance
between a simple working solution and modular design has to be struck.

In addition to the practice of sharing code there are other important so-
cial practices in the FLOSS community. The social practise of structuring
a project around a piece of software is one example. It is possible to just
give software to others without starting a project. The practice of listing
important contributors in a credits file is another example. Many of these
social practices are mentioned in chapter 5. In Figure 11.2 I have made a
model of the modalities of signification, domination and legitimisation giv-
ing structure to the FLOSS community. The figure also show other social
systems influencing FLOSS. The line are intentionally dashed to show that
the boarder between the social systems are open ended.

4] ’/’Eaucation and |
--.._ ._Research System

¢ Economic System) ___-------- e

- - - '

{ LegalSystem) ; :

-~ signification

English

Wikis Documentation

Jargon file Project web page

Computer language

Issue tracking systems

Communication

Domination

Nettwork of contacts
Copyright

Allowed to commit

Trademark Donations

Reputation

Involvment in project

Power

Legitimisation

Leaders should
produce code

Writeen rules

of conduct Code should

be free
Don't brag.
Let the code
brag for you

Licenses

Figure 11.2: FLOSS modalities

11.3 Theoretical considerations 194

11.3.2 Participatory development

Within the HISP network the participatory design strategy is important for
the development of DHIS and even more for the translation of DHIS to a
new context. It is important to seek user feedback throughout the design
process. In Tigray we involved the users through the formation of a team
to decide on data elements and reports. Most of the reports that this team
decided on could not be used in a computer based IS. Regular users of-
ten need guidance throughout the design process to be able to participate
effectively. Users often lacks a clear understanding in what is technical fea-
sible. For this reasons I made significant changes to the reports decided by
the user team, and even added and removed some data elements. I sought
user feedback by asking the departments what they wanted the reports to
contain, and by showing them the reports I had made.

PD focuses solely on the design of a system. If the design is isolated from
the actual implementation of the software, there is good chance that the
design obtained through user involvement becomes bloated and difficult
to implement. User feedback should not only be sought throughout an
isolated design phase, but should be sought after throughout the actual
implementation of the system as well. If reality shows that some design
decisions cannot be met, user feedback on the changed design should be
sought.

On the FLOSS scene it is not uncommon for some of the actual users of
a piece of software to be programmers as well as users. In these cases it
makes sense to extend the term participatory design into participatory de-
velopment. It is not necessary to seek user feedback for project where the
actual users are also programmers, feedback comes to the project in the
forms of patches, bug reports and feature requests. For projects where the
actual users are not programmers it is unreasonable to expect users to be
able to contribute patches or to give precise bug reports. Regular users can
contribute with feature requests and give superficial bug reports, however.
Regular users can also contribute with user support and user documenta-
tion. Feedback from regular users have to be actively sought after, and they
generally need more guidance in communicating feature requests and bug
reports.

To assure continuous user feedback it makes sense to develop an evolu-
tionary prototype. It is much easier to comment on an actual running sys-
tem compared to mock-ups. All FLOSS software are in a sense evolution-
ary prototypes, constantly changed at the same time as it is in active use.
FLOSS takes small steps at the time, no grand releases after an extended pe-
riod of isolated development. Throwaway prototypes can be well suited for

11.3 Theoretical considerations 195

experimenting with different solution to a difficult problem. Experimenta-
tion with different solution can be done in parallel and the most suited
solution can be incorporated in the evolutionarily prototype. Throwaway
prototypes are also useful for getting user feedback in the initial design
phase.

11.3.3 Free to translate technology

Relating to my presentation of technology translation in section 2.3.2. FLOSS
offers unique opportunities for translating software, both translation of the
language and the functionally, making software more useful for a develop-
ing country. It also takes the term configurable to a new level. FLOSS give
the control of the software to the user, and configuration of software can
be done down to the source code level. Source code changes requires ad-
vanced computer knowledge and hard work, this is not an option for most
individual users and small non-computer related businesses. For a country,
however, this is indeed possible.

Three points was mentioned in connected with the presentation of technol-
ogy translation:

1. The initiative should be designed as an incremental and context sen-
sitive process, carried out in rather small steps.

2. Translation represents and iterative end evolving long term process,
having implications for both sustenance and scale issues.

3. Technology translation includes building and supporting heteroge-
neous socio-technical networks and ensuring indigenous capacity build-

ing.

This points are relevant whether the software is FLOSS or not, but FLOSS
facilitate indigenous capacity building. It is in the process of customisation
that the availability of the source code is especially relevant. See Figure 2.5.

DHIS is built to enable visual customisation. It is common in proprietary
software as well as FLOSS software to enable customisation. If it was pos-
sible to do all the necessary changes to DHIS in the translation process,
through customisations, then DHIS could be distributed with a non-FLOSS
license. This has not been the case, however. Frequently there has been sit-
uations where source code changes were necessary. For context insensitive
software like operating systems and word processors the customisations

11.3 Theoretical considerations 196

offered by the software is usually enough. For more context sensitive ap-
plications like DHIS the customisations offered is often not enough. In this
cases it is a life saver to have access to the source code. The ability to change
source code empower the people translating software, both those who do
language translation and those who change the design and functionality of
an application.

Chapter 12

Conclusion

In this chapter I will first give an assessment of the validity of my research
according the validity criteria described in section 3.1.1. Then I will make
some concluding remarks about my research into FLOSS, HISP, Ethiopia
and developing countries. Last I will look into the future and give some
suggestions for research into my problem domain.

12.1 Validity of the research

My research was conducted using AR. Within AR the research situation
determine which concrete research methods to be used. This can be both
qualitative and quantitative methods. AR do not have any absolute criteria
to determine if the interpretations made are valid. AR research will always
be open to new interpretations. To give some idea of how valid my research
is I will use the validity criteria mentioned in section 3.1.1.

12.1.1 Process validity

To reach appropriate conclusions in AR it is important for the research to go
through many cycle. At the end of each cycle intermediate conclusions are
made. Based on this intermediate conclusions better research questions can
be asked. Through my research I have constantly refined my understand-
ing of FLOSS, HISP, Ethiopia and developing countries through direct and
vicarious experiences. I have read a lot of literature, I have participated in
FLOSS development in Ethiopia and in the DHIS 2 project. In my research I
have gone through many small cycles. As Figure 3.2 goes I have only gone

12.1 Validity of the research 198

through one full circle for each of my two case studies. This thesis is the
tirst real result of the Specifying Learning phase.

Throughout my research I have made use of triangulation. I have made
use of both qualitative and quantitative methods to verify my conclusions.
I have also used many information sources like my own experiences, the
experiences of my coworkers and stakeholders, and various literature. All
in all T have been quite rigorous in my information handling. I developed a
good relationship with the other members of the Tigray team, the relation-
ship developed with the workers in the Tigray health bureau and in the
two district was limited. During the one week training at the health bureau
I got a quite good relationship with the workers. They had no problems
with asking questions and coming with feature request. In the DHIS 2 case
I unfortunate developed a too limited relationship with the others in the
DHIS 2 virtual community.

12.1.2 Dialogic validity

Within AR it is considered important to subjugate research data, methods
and interpretations to peer review. In the process of writing this master
thesis I have only done this to a limited extent. I made one interview with
Knut Staring, which is one of the managers of the DHIS 2 project, to obtain
data about DHIS 2 and to verify my assumptions of the DHIS 2 project.
In Tigray I naturally talked with the other team members about what we
should do, and about what we experienced in our dealings with the health
bureau. Hopefully other people will read this thesis and be able to improve
my interpretations.

12.1.3 Outcome validity

The outcome of the Tigray case was not exactly what we hoped for. DHIS
1.3 never came into regular use, not even in the pilot districts. We suc-
ceeded, however, in bringing much needed attention to the data gathering
practices in Tigray. Tigray have expressed interest in DHIS 2, and perhaps
this system will come into regular use in Tigray. This still remains to be
seen. It was not a goal in it self for Tigray to use DHIS 1.3, the goal was
to improve the information handling practises, and we assisted the Tigray
health bureau in this. It was their choice to not start using DHIS 1.3 in the
pilot districts.

When I started on the DHIS 2 case I was hoping to build an ICD code plug-
in for DHIS 2. From the experiences I got in Ethiopia I saw the need for

12.1 Validity of the research 199

such a plug-in to DHIS 2. Unfortunately I never came around to actually
build this plug-in. The DHIS 2 project was at an early stage of development
and it was not clear how DHIS 2 should facilitate extensibility. I worked on
a plug-in framework for DHIS 2, and I managed to make a throwaway
prototype of a framework. I concluded that this framework would create
more complexity than it would give value in extensibility.

12.1.4 Catalytic validity

I have most definitely moved towards a better understanding of FLOSS,
HISP, Ethiopia and developing countries. I have also moved towards a bet-
ter understanding of IS theory, and I have improved as a programmer. The
knowledge and experiences I have obtained through this research will be
of great assistance in a future work situation. The DHIS 2 case have taught
me important lessons about software development and I have learned to
use interesting technologies. Using AR to do practitioner study on my
own work situation as I did in the DHIS 2 case will also make me more
self-reflective in a future work situation. My knowledge about FLOSS will
make it easier for me to participate in FLOSS projects, and my experiences
from Ethiopia have made it easier for me to work with people from other
cultures. All in all I have grown as a human being, and I feel prepared to
work with programming in various social contexts.

It is more difficult to assess how much the workers in the Tigray health
bureau have moved to a better understanding of their organisation and
information handling practices. Damitew and Gebreyesus (2005) can tell
more about this than I. I do not think I have contributed much to make the
other DHIS 2 developers understand FLOSS and the DHIS 2 project better,
at least not while I conducted my research. I do not think anybody but
myself have moved significantly to a better understanding of FLOSS, nei-
ther in the Tigray case or in the DHIS 2 case, through the research process.
However, those who choose to read this thesis can learn a lot about FLOSS,
HISP, IS theory, Ethiopia and developing countries.

12.1.5 Democratic validity

In the Tigray case the research was most definitely done in collaboration
with the stakeholders. We offered our services to the Tigray health bureau
and they accepted. In the Tigray case we acted as facilitators, facilitating
discussions about the data gathering practises in Tigray. We also acted as
software developers, configuring DHIS 1.3 for Tigray. User feedback was

12.2 Concluding remarks 200

sought through the training sessions, and by questioning the different de-
partments about the reports DHIS produced or should produce. The DHIS
2 case was a practitioner study and I should have sought different views
on how to make DHIS 2 extensible from the other DHIS 2 developers. Both
our research in Tigray and my research in the DHIS 2 project was relevant
to the local context.

12.2 Concluding remarks

This thesis have explored FLOSS, HISP, Ethiopia and developing countries.
I have explored how FLOSS are and can benefit HISP, and I have explored
how FLOSS are benefiting and can benefit Ethiopia in particular, and de-
veloping countries in general. This thesis has given a general introduction
to FLOSS and HISP. T have presented one case study conducted in Ethiopia,
where I worked as a DHIS translator. This case study was used to inves-
tigate FLOSS and Ethiopia, and HISP and the Tigray health bureau. I con-
ducted another case study as part of the DHIS 2 project. This case study
was used to explore FLOSS and HISP.

This are exiting times for FLOSS. The practice of source sharing and dis-
tributed voluntary development has risen from obscurity in the last few
years. FLOSS offers an opportunity for technological marginalised coun-
tries to benefit from a lot of freely available information, both in source code
form and in English (and to a lesser extend other languages). The source
code opens up the black box of software in ICTs, and gives developing
countries the opportunity to translate the software into the local context.

In the Ethiopian region of Tigray we used the freedom offered by FLOSS to
translate DHIS 1.3 into the local context of Tigray. We would be unable to
perform our job in Tigray if we did not have access to the source code. In
Tigray the social aspects of IS development was the most important. The
challenges we met was both technical and social in nature, but the social
aspects was most important. Most of the time was spent on negotiating
with the health bureau, conducting training and trying to get the different
departments to talk together. As the only foreigner on the team I meet
additional cultural and language challenges. I concentrated most on the
technical aspects of configuring DHIS 1.3 to the local context of Tigray.

The awareness of FLOSS is low in Ethiopia compared to more technically
advanced developing countries. For the few individuals in Ethiopia who
have their own PC there are no clear advantage in using FLOSS. Cheap
pirated versions of proprietary software are readily available. For the ed-
ucation sector and the general government sector, like the health system,

12.3 Possible future research 201

FLOSS has a more clear advantage. Ethiopia have signed the TRIPS agree-
ment, which require Ethiopia to ratify intellectual property right laws. This
give the Ethiopian government an economical incentive to use FLOSS. In-
dependence from software vendors by promoting open standards, less vul-
nerability to viruses and the possibility of fostering home grown computer
industries are more important than the direct monetary savings. For Ethiopia
to benefit from and contribute to FLOSS local capacity have to be fostered
through the education sector. Some minor institutional support for FLOSS
are in the process of being built in Ethiopia through efossnet.org.

The DHIS software has since its inception been licensed with a FLOSS li-
cense. However, the software was not developed using distributed vol-
untary development. The development was done by one team in South
Africa. Due to technical limitations of the platform DHIS was developed
on, distributed development was difficult. To overcome the limitations
inherent to the platform DHIS was developed on, it was decided to start
the DHIS 2 project. DHIS 2 is a total reimplementation of DHIS based on
Java and Java frameworks. The single most important advantage of DHIS
2, is the possibility it offer for doing distributed voluntary development.
Through participating in the DHIS 2 project I learned more about partic-
ipating in a FLOSS project, and I learned more about HISP. To facilitate
distributed development it is important with modular well documented
code, good development documentation and an active virtual community.
To facilitate the creation of modules which can be distributed independent
of the DHIS core it is important with extensibility. Not all modules of DHIS
are equally relevant in all contexts. How extensible DHIS 2 is and will be-
come remains to be seen.

This thesis has been conducted within a social informatics perspective which
recognise the importance of the social and technical context in which an IS
is applied. Technology cannot be seen to have a predetermined effect on the
social system in which the technology is applied. The social system is often
changed by the technology in an unanticipated way, and the technology
itself is also changed by the social system. Important to the understanding
of how social system are changed and replicated over time and space is the
grand theory of structuring theory.

12.3 Possible future research

My research into FLOSS and Ethiopia is rather broad. To find ways to effec-
tively benefit from FLOSS there is a need for more focused research. I have
identified the education and research sector of Ethiopia as a sector where

12.3 Possible future research 202

Ethiopia is most likely to benefit from FLOSS. Research into how this can
be done most effectively would be of interest. More general research on the
usage of FLOSS in the education and research sector in both developed and
developing countries would also be of interest.

As seen from Figure 1.1 I have not focused on the use of FLOSS in health
care and FLOSS health applications, and neither have I investigated to any
detail how the Tigray health system relates to the overall Ethiopian health
system. This are research area I leave to others. This thesis has not focused
on health care. DHIS is one health care application, but there exist others
that could be of interest to both HISP and Ethiopia.

Unfortunately I never came around to make DHIS 2 extensible. Research
into how to extend DHIS 2 and how to make DHIS 2 more extensible would
be an interesting research questions, for the more technical inclined.

References

Asaro, Peter M. (2000). Transforming society by transforming technol-
ogy: the science and politics of participatory design. Accounting Man-
agment and Information Technologies (10), 257-290.

Baark, Erik and R. Heeks (1998). Evaluation of donor-funded infor-
mation technology transfer projects in china: A lifecycle approach.
(http://www.sed.manchester.ac.uk/idpm/publications/wp/di/). Develop-
ment Informatics: Working Paper Series.

Baskerville, Richard L. (1999). Investigating in-
formation systems with action research.
(http://www.cis.gsu.edu/~rbaskerv/CAIS_2 19/CAIS 2 19.html).
Communication of the Association for Information Systems 2.

Berhe, Aregawi (2004). The origins of the tigray people’s liberation front.
African Affairs 103(413), 569-592.

Bjerknes, Gro and T. Bratteteig (1995). User participation and democ-
racy: A discussion of scandinavian research on systems develop-
ment. Scandinavian Journal of Information Systems 7, 73-98.

Braa, Jorn (1997). Use and Design of Information Technology in Third World
Contexts with a Focus on the Health sector: Case studies from Mongolia
and South Africa. Ph. D. thesis, University of Oslo.

Braa, Jorn and B. Blobel (2003). Strategies for developing health infor-
mation systems in developing countries. Technical report, WITFOR
Health Commission.

Braa, Jorn, E. Monteiro and S. Sahay (2004, September). Networks of
action: Sustainable health information systems across developing
countries. MIS Quarterly 28(3).

Briggs, Philip (2003, February). Ethiopia - The Bradt Travel Guide (3rd ed.).
Bradt Travel Guides Ltd.

Bodker, Susanne and K. Grenbaek (1991). Cooperative prototyping:
Users and designers in mutual activity. International Journal of Man-
Machine Studies 34(3), 453-478.

http://www.sed.manchester.ac.uk/idpm/publications/wp/di/
http://www.cis.gsu.edu/~rbaskerv/CAIS_2_19/CAIS_2_19.html

REFERENCES 204

CDCP (2005). About epi info. WWW.
(http://www.cdc.gov/epiinfo/about.htm).

Crinnion, John (1991). Evolutionary Systems Development, a practical guide
to the use of prototyping within a structured systems methodology. Plenum
Press, New York.

Cross, Michael (2005, August). Ethiopia’s digital dream.
(http:/technology.guardian.co.uk/online/story/0,3605,1541785,00.html).
The Guardian.

Damitew, Hirut Hebrekidan and N. H. Gebreyesus (2005). Sustainabil-
ity and optimal use of health information systems. Master’s thesis,
University of Oslo.

Davis, Alan M. (1992). Operational prototyping: A new development
approach. IEEE Software 9(5), 70-78.

Denzin, Norman K. and Y. S. Lincoln (Eds.) (1994). Handbook of Qualita-
tive Research (1 ed.). Sage Publications, Inc.

Dick, Bob (1993). You want to do an action research thesis? www.
(http://www.scu.edu.au/schools/gcm/ar/art/arthesis.html).

(Director), Samia Zekaria (2005). Ethiopia demographic and health sur-
vey. Technical report, Ethiopia Central Statistical Agency.

Docktor, Roslyn. Accelerating e-government ...e-readiness
at work. Technical report, McConnell International.
(http://unpanl.un.org/intradoc/groups/public/documents/ CAFRAD/UNPANOQ06617.pdf).
Presenation slides.

Giddens, Anthony (1984). The Constitution of Society: Outline of the Theory
of Structuration. Cambridge: Polity Press.

Greenwood, Davydd J. and M. Levin (1998). Introduction to Action Re-
search. Sage Publication.

Gregor, Shirley (2005). The struggle towards an understanding of theory
in information systems. In Information Systems Foundation: Construct-
ing and criticising.

Gurstein, Michael (2003). Effective use: A commu-
nity informatics strategy beyond the digital divide.
(http://www.firstmonday.org/issues/issue8_12/gurstein/). First Mon-

day 8(12).
Hanseth, Ole and E. Monteiro (1998, August). Un-
derstanding information infrastructure. WWW.

(http://heim.ifi.uio.no/~oleha/Publications/bok.pdf). Manuscript.

Heeks, Richard (1999). The tyranny of participation in in-
formation systems: Learning from development projects.

http://www.cdc.gov/epiinfo/about.htm
http://technology.guardian.co.uk/online/story/0,3605,1541785,00.html
http://www.scu.edu.au/schools/gcm/ar/art/arthesis.html
http://unpan1.un.org/intradoc/groups/public/documents/CAFRAD/UNPAN006617.pdf
http://www.firstmonday.org/issues/issue8_12/gurstein/
http://heim.ifi.uio.no/~oleha/Publications/bok.pdf

REFERENCES 205

(http://Iwww.sed.manchester.ac.uk/idpm/publications/wp/di/). De-
velopment Informatics: Working Paper Series.

Heeks, Richard (2002). Failure, success and improvisation
of information systems projects in developing countries.
(http://mvww.sed.manchester.ac.uk/idpm/publications/wp/di/). De-
velopment Informatics: Working Paper Series.

Heeks, Richard, D. Mundy and A. Salazar (1999). Why
health care information systems succeed or fail
(http://Iwww.sed.manchester.ac.uk/idpm/publications/wp/igov/).
Information Systems for Public Sector Management: Working Paper
Series.

Herr, Kathryn and G. L. Anderson (2005). The Action Research Disserta-
tion: A Guide for Students and Faculty. Sage Publication.

Horstmann, Jutta (2004, April). Looking for penguins at
the horn of africa. Technical report, Relevantive AB.
(http://www.relevantive.de/et_travelreport.html). Travel report.

Kimaro, Honest C. and O. H. Titlestad (2005). Challenges of user par-
ticipation in the design of a computer based system: the possibil-
ity of participatory customisation in low income countries. Inter-
national Federation for Information Processing: Work Group 9.4.
(http://mww.hisp.info/confluence/display/HISP/ResearchPapers).

Kling, Robert, H. Crawford, H. Rosenbaum, S. Sawyer and S. Weisband
(2000). Learning from social informatics: Information and communi-
cation technologies in human contexts. Technical report, Center for
Social Informatics. (http://rkcsi.indiana.edu/).

Kohn, Alfie (1987, January). Studies find reward often no motivator.
www. (http://www.gnu.org/philosophy/motivation.html).

Lakhain, Karim R., B. Wolf and J. Bates (2002, Jan-
uary). Hacker ~ Survey. The Boston Consult Group.
(http://www.bcg.com/opensource/BCGHACKERSURVEY.pdf).
Downloaded July 15 2005.

Lancasshire, David (2001). Code, culture and cash:
The fading altruism of open source development.
(http://www.firstmonday.org/issues/issue6_12/lancashire/). First
Monday 6(12).

Lee, Fion S. L., D. Vogel and M. Limayem (2002). Virtual com-
munity informatics: What we know and what we need to

know. Hawaii International Conference on Systems Sciences.
(http://csdl.computer.org/comp/proceedings/hicss/2002/1435/08/14350214b.pdf).

http://www.sed.manchester.ac.uk/idpm/publications/wp/di/
http://www.sed.manchester.ac.uk/idpm/publications/wp/di/
http://www.sed.manchester.ac.uk/idpm/publications/wp/igov/
http://www.relevantive.de/et_travelreport.html
http://www.hisp.info/confluence/display/HISP/ResearchPapers
http://rkcsi.indiana.edu/
http://www.gnu.org/philosophy/motivation.html
http://www.bcg.com/opensource/BCGHACKERSURVEY.pdf
http://www.firstmonday.org/issues/issue6_12/lancashire/
http://csdl.computer.org/comp/proceedings/hicss/2002/1435/08/14350214b.pdf

REFERENCES 206

Mockus, Audris, R. T. Fielding and J. D. Herbsleb (2002). Two case stud-
ies of open source software development: Apache and mozilla. ACM
Transactions on Software Engineering and Methodology 11(3).

Muehlig, Jan and J. Horstmann (2004, February). Open
source project ethiopia. Technical report, Relevantive AG.
(http://lwww.relevantive.de/et_project.pdf).

Nhampossa, José Leopoldo (2006). Re-Thinking Technology Transfer as
Technology Translation. Ph. D. thesis, University of Oslo.

Perens, Bruce (1999, February). It’s time to talk about free software
again. (http://lists.debian.org/debian-devel/1999/02/msg01641.html).
Archived e-mail.

Proulx, Serge and G. Latzko-Toth (2005). Mapping the virtual
in social sciences: On the category of “virtual communities”.
(http://www.ci-journal.net/viewarticle.php?id=80). The Journal of Com-
munity Informatics 2(1), 42-52.

Rajani, Niranjan (2003). Free as in Education. OneWorld Finland and
KEPA Helsinki, Finland.

Raymond, Eric S. Jargon file. www. (http://www.catb.org/jargon/).

Raymond, Eric S. (2001, February). The Cathedral and the Bazaar. O'Reilly.
(http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/).

Robert K. Yin, Donald T. Campell (2003). Case Study Resarch: Design and
Methods. Sage Publications.

Rose, Jeremy (2000). Information systems development as action research -
soft systems methodology and structuration theory. Ph. D. thesis, Aalborg
University. (http://www.cs.auc.dk/~jeremy/pdf%20files/thesis.pdf).

Rose, Jeremy (2001). Evaluating the contribution of structura-
tion theory to the information systems discipline. www.
(http://www.cs.aau.dk/~jeremy/pdf%20files/ECIS1998.pdf).

Rose, Jeremy and R. Scheepers (2001, June). Structuration the-
ory and information systems development - framework for
practice. pp. 217-231. Global Co-Operation in the New Mille-
nium: The 9th European Conference on Information Systems.
(http://csrc.lse.ac.uk/asp/aspecis/20010096.pdf).

Rudd, Jim, K. R. Stern and S. Isensee (1996, January). Low vs. high-
fidelity prototyping debate. interActions, 76-85.

Sawyer, Steven and H. Rosenbaum (2000). Social informatics in the infor-
mation sciences: Current activities and emerging directions. Inform-
ing Science 3.

http://www.relevantive.de/et_project.pdf
http://lists.debian.org/debian-devel/1999/02/msg01641.html
http://www.ci-journal.net/viewarticle.php?id=80
http://www.catb.org/jargon/
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/
http://www.cs.auc.dk/~jeremy/pdf%20files/thesis.pdf
http://www.cs.aau.dk/~jeremy/pdf%20files/ECIS1998.pdf
http://csrc.lse.ac.uk/asp/aspecis/20010096.pdf

REFERENCES 207

Software Productivity Consortium (1997, June). Evolutionary Rapid De-
velopment. Software Productivity Consortium. SPC document SPC-
97057-CMC.

Spinuzzi, Clay (2002). A scandinavian challenge, a us response:
methodological assumptions in scandinavian and us prototyping ap-
proaches. pp. 208 — 215. ACM Special Interest Group for Design of
Communications.

Stallman, Richard (1999, January). The gnu operating system and
the free software movement. In Open Sources : Voices from the
Open Source Revolution (1st ed.). O'Reilly & Associates, Inc..
(http://lwww.gnu.org/gnu/thegnuproject.html).

Stallman, Richard M. (2002, October). Why software should not have
owners. GNU Press. (http://www.gnu.org/philosophy/why-free.html).

Walsham, Geoffrey (1993). Interpreting Information Systems in Organiza-
tions. John Wiley & Sons Ltd.

Walsham, Geoffrey (2001). Making a World of Difference: IT in a Global
Context. John Wiley & Sons Ltd.

Warschauer, Mark (2002). Reconceptualizing the digital divide.

(http://www.firstmonday.org/issues/issue7_7/warschauer/). First
Monday 7(7).

Weber, Steven (2004). The Success of Open Source. Harvard University
Press.

Williams, Robin and D. Edge (1996). The social shaping of technology.
Research Policy 25, 856-899.

Williams, Sam (2002). Free as in Freedom: Richard Stallman’s Crusade for
Free Software. O'Reilly & Associates, Inc.. (http://www.faifzilla.org/).
Online version.

World Trade Organisation (1994, April). Trade-Related Aspects
of Intellectual Property Rights. World Trade Organisation.

(http://www.wto.org/english/docs_e/legal_e/legal_e.htm). Annex
1C of the agreement.

Yamagata, Hiroo (1997). The pragmatist of free software. WWW.
(http://hotwired.goo.ne.jp/matrix/9709/5_linus.html).

http://www.gnu.org/gnu/thegnuproject.html
http://www.gnu.org/philosophy/why-free.html
http://www.firstmonday.org/issues/issue7_7/warschauer/
http://www.faifzilla.org/
http://www.wto.org/english/docs_e/legal_e/legal_e.htm
http://hotwired.goo.ne.jp/matrix/9709/5_linus.html

Part VI

Appendixes

Appendix A

Lists

A.1 List of Acronyms

AAU ... Addis Ababa University
ADSL.....................l Asymmetrical Digital Subsciber Line
AMD Advanced Micro Devices
ANC ... African National Congress
APL ... Application Programming Interface
AR Action Research
BIND ... Berkley Interned Naming Daemon
BSDI....................l Berkley Software Design Incorporated
BSD ... Berkley Software Distribution
BTL Bell Telephone Laboratories
CARD............... Collaborative Analysis of Requirements and Design
CDC ... Centers for Disease Control and Prevention
CITCC China International Telecommunication Construction Corporation
CL .. Community Informatics
CMS .. Content Management System
CMU ... Carnegie-Mellon University
COM ... Component Object Model
CUD ... Coalition for Unity and Democracy
DARPA US Defence Advanced Research Project Agency
DBMS ... Database Management System
DECUS DEC User Group
DHIS ...l District Health Information Software
DMS... ... Distributed Multimedia Systems
DPC...................l Decease Prevention and Control department
EASSy ... East African Submarine Cable System
EDS .. Essential Data Set
EJB. ..o Enterprise Java Beans

EPLFE. ... Eritrean People’s Liberation Front

A.1 List of Acronyms 210

EPRDF............... Ethiopian Peoples” Revolutionary Democratic Front
ETC.................... .. Ethiopian Telecommunications Corporation
FLOSS Free/Libre/Open Source Software
FOSSFA Free and Open Source Software Foundation for Africa
FSF .. Free Software Foundation
FWA . Fixed Wireless Access
GCC.. GNU Compiler Collection
GDB ... GNU Debugger
GE . General Electrics
GFF ... Ge’ez Frontier Foundation
GIS.... ..o Geographical Information System
GPL....... GNU General Public License
GUI.....o Graphical User Interface
HDI..... ... Human Development Index
HISP-ET................. Health Information System Program in Ethiopia
HISP............................ Health Information Systems Programme
HIS.. ... Health Information System
HMIS. ...l Health Management Information Systems
IANA ... Internet Assigned Number Authority
ICD ... The International Classification of Deceases
ICT......o Information and Communication Technology
IL. Information Infrastructure
IM . Instant Messaging
INF5750 ... Open Source Software development
IoC ... Inversion of Control
IPC ... inter process communication
IRC . Internet Relay Chat
ISO.......o International Organization for Standardization
ISP .. Internet Service Providers
IS Information Systems
ITS .. Incompatible Time-sharing System
J2EE ... Java 2 Enterprise Edition
JPF Java Plug-in Framework
LGPL ... Lesser General Public License
LIR .o Local Internet Registry
LKM. ... Loadable Kernel Modules
LUG Linux User Group
MIT ..., Massachusetts Institute of Technology
NCP.....o Network Control Program
NDA .. None Disclosure Agreements
NEPAD The New Partnership for Africa’s Development
Net/1.... .o Networking Release 1
Net/2. ... o Networking Release 2

NGO ..o i Non-Governmental Organisation

A.1 List of Acronyms 211

NIR.....o National Internet Registry
NJMF Norwegian Iron and Metal Workers” Union
NLM Norsk Luthersk Misjonssamband
NORAD............... Norwegian Agency for Development Cooperation
O .. Organisational Informatics
OLPC.... . One Laptop Per Child
OOP ... Object Oriented Programming
OSI-stack ..., Open Systems Interconnection
OSI. .. Open Source Initiative
OS . Operating System
2 Peer-to-Peer
PARC. Palo Alto Research Center
PAR.......o Participatory Action Research
PDA ... Personal Digital Assistant
PD .. Participatory Design
PICTIVEPlastic Interface for Collaborative Technology Initiatives through
Video Exploration

RAD ... Rapid Application Development
RDP ...t Reconstruction and Development Program
RIR.....ooo Regional Internet Registry
SAIL Standford University’s Artificial Intelligence Laboratory
ST Structuration Theory
TCO...o Total Cost of Ownership
TED ... Technology, Entertainment and Design
TPLE ... Tigrayan Peoples’ Liberation Front
TRIPS....... Agreement on Trade-Related Aspects of Intellectual Property
Rights

UEDF............................... United Ethiopian Democratic Forces
UiO .. University of Oslo
UNMEE.................. United Nations Mission in Ethiopia and Eritrea
USL... . Unix System Laboratories
UUCP ... Unix to Unix Copy Program
VBA ... Visual Basic for Applications
VCI...o Virtual Community Informatics
WAN L Wide Area Network
WPE ... Workers’ Party of Ethiopia
WSIS ... World Summit on the Information Society
WTO ... World Trade Organisation

WIWW World Wide Web

A.2 List of Figures 212

A.2 List of Figures

1.1 Visualising my research domains 4
2.1 Dimensions of the duality of structures - Giddens 1984 . . . 16
2.2 Social practices stabilising through time and space - Rose 2001 19
2.3 Effective Use of ICTs by Warschauer 33

24 The Information Technology Transfer Life-cycle by Baark & Heeks 35
2.5 Factors influencing the technology translation process by Nhampossa 38

3.1 Robert Stake’s Evolutionary View of Change 46
3.2 The Action ResearchCycle 48
3.3 An analytical model loosely resembling the duality of structure 56

4.1 Evolutionof Unix, 81

5.1 Diagram by Chao-Kuei that explains different categories of software licenses 97

6.1 HISP hierarchy of standards 112
71 MapofEthiopia 128
81 MapofTigray 131
8.2 WhatlIdidin Ethiopia 132
11.1 The user-programmers within the DHIS context 180
11.2 FLOSS modalities o o v i e 193

A.3 List of Tables

2.1 Walsham’s analytical framework 18

3.1 Anderson and Herr’s Goals of Action Research and Validity Criteria 44

3.2 Formsof IS ActionResearch 47
3.3 Internet Information Sources for the Tigray case 53
9.1 Operating systems and web servers used in Ethiopia 156

10.1 The top six contributors to the DHIS 2 core (31st of August 2006)161
10.2 Collaborative services used in the DHIS 2 development . . . 162

	Introduction
	Two action research case studies
	Motivation
	Research domains and objectives
	Chapter presentation

	I Theory
	Information Systems Theory
	Perspectives
	Information systems as social systems
	Structuration theory in the field of IS
	Community- and Organisational Informatics

	Participatory design
	Prototyping
	Limitations and challenges with participatory approaches

	Information Systems and developing countries
	The digital divide
	Technology transfer/translation

	II Method
	Methods
	Research methodology
	Action research
	Case Study

	My research approach
	Working in the Tigray HISP team
	Participating in the development of DHIS 2
	Methods for data collection
	How I will use ST
	Limitations in my research approach

	III Background
	Short History of Open Source
	The early start of programming
	The three strains of hackerdom
	Multics, Unix and AT&T
	The rise of the Internet
	Free Software Foundation
	Minix, Linux and Hurd
	The rise of Open Source into the main stream

	FLOSS - How does it work?
	Philosophy and values
	Hacker ethic
	Pragmatism
	Moralism

	Development practices
	Motivation
	Governance
	Property, Copyright and Licenses
	Challenges and constrains of FLOSS
	FLOSS in developing countries
	Advantages FLOSS offer
	Participation in FLOSS
	Projects for the developing world
	FLOSS participation and use challenges

	Health Information Systems Programme (HISP)
	HISP history
	HISP philosophy, methods and processes
	Inscription of the HISP approach into DHIS

	IV Empirical Study
	The Ethiopian Context
	Demographics
	Ethiopia, a Land of History
	Politics
	ICT in Ethiopia

	The HISP project in Ethiopia
	Tigray Demographics
	The Tigray team
	EPI-info
	Adapting DHIS for Tigray
	Problems with the DHIS software
	Getting support from the HISP community
	Being the farench/faranji

	FLOSS in Ethiopia
	Economic argument for FLOSS
	The TRIPS agreement
	Political support for FLOSS
	FLOSS usage
	Ethiopian FLOSS organisations
	Participation of Ethiopia in FLOSS
	Analysis of the network in Ethiopia

	Development of a Plug-in Framework for DHIS 2
	Why the need for a reimplementation?
	The community model in DHIS 2
	My role in the project
	What motivated me to participate
	Making the application extensible
	Interaction with other DHIS 2 developers
	Interaction with projects we depended on

	V Discussion and Conclusion
	Discussion
	FLOSS and Ethiopia
	Effective use of the Internet
	Effective use of FLOSS
	HISP, Tigray and Ethiopia

	FLOSS and HISP
	HISP and the conventional FLOSS community
	Comparing DHIS 1.x and DHIS 2 development
	Comparing the Tigray and DHIS 2 cases

	Theoretical considerations
	Structuration of FLOSS
	Participatory development
	Free to translate technology

	Conclusion
	Validity of the research
	Process validity
	Dialogic validity
	Outcome validity
	Catalytic validity
	Democratic validity

	Concluding remarks
	Possible future research

	VI Appendixes
	Lists
	List of Acronyms
	List of Figures
	List of Tables

